Задаци

  • 1.      

    Ако је \(log_23=a \), тада је \(log_64\) једнако:

    \(   \frac{1}{1+2a}       \)
    \(       \frac{1}{2+a}     \)  
    \( \frac{1}{2(1+a)}  \)  
    \(  \frac{2}{1+a}  \)
    \(  -2(1+a) \)

    Провери одговоре Не знам

  • 2.      

     Ако су странице троугла \(a=1, b=3\sqrt{2}, c=5\), тада је највећи угао једнак:

     

     \(\frac{2\pi}{3}\)
    \(\frac{3\pi}{4} \) 
    \(\frac{\pi}{2}\)
    \(\frac{5\pi}{12}\)        
    \(\frac{5\pi}{6}   \) 

    Провери одговоре Не знам

  • 3.      

    У троуглу су странице \(b=3\sqrt{3}\) и \(c= 6\) , а најмањи угао \(\alpha=\frac{\pi}{6} \). Ако је трећа страница \(a < b\) , тада је \(a\) једнако:

    \(     \frac{3}{2}    \)  
    \(   \frac{5}{2}    \)
    \(  2\sqrt{3}    \)
    \(    2     \) 
    \( 3 \)

    Провери одговоре Не знам

  • 4.      

    Нека је \(S\) скуп свих целобројних вредности параметра \(m\) за које једначина \(x^2-(m-3)x+5+m=0\) има оба решења негативна. Број елемената скупа \(S\) је:

     

    \(7 \)  
    \(3\)    
    \(>7\)
    \(6\)  
    \(4\)

    Провери одговоре Не знам

  • 5.      


     Број решења једначине \(2\sin^2x=\sin2x\) на интервалу \([-\pi,\pi]\) једнак је

    6
    4
    5
    3      

    Провери одговоре Не знам

  • 6.      

     Ако је \((a,b]\cup(c,d]\) решење неједначине \(\frac{x^2+x-28}{x^2-4x-5}\geq2\), тада је \(a+b+c+d\) једнако:

     

    \(12\)    
    \(14\)  
    \(16\)
    \(15\)  
    \(13\)

    Провери одговоре Не знам

  • 7.      

    Број различитих решења једначине \(1 + \sin 2x - 2\sin x = \cos 2x\) на интервалу \([0,3\pi]\) је:

    \(    2     \)  
    \(   4\)
    \(  3    \)
    \( 6 \)
    \(     5    \)  

    Провери одговоре Не знам

  • 8.      

    Производ свих реалних решења једначине \(|x|+|x-1|=x+\frac{1}{2}\) једнак је:

     

    \(\frac{3}{2} \)   
    \(\frac{3}{4}\)  
    \(\frac{1}{2}\)  
    \(\frac{1}{8}\)        
    \(\frac{5}{6}\)  

    Провери одговоре Не знам

  • 9.      

    Ако је \(J=ab+\frac{a^2b+ab^2}{a^2-b^2}(\frac{a^2}{b}-\frac{b^2}{a}); a=1,75 ; b=1,25\) тада је \(J\) једнако:

    \(   \frac{1}{4}          \)
    \(  1      \)
    \(    4   \)  
    \(    \frac{37}{8}      \)  
    \(  9     \)

    Провери одговоре Не знам

  • 10.      

    Из тачке \(A(3,4) \) постављена је нормала \(n\) на праву \(p:4x-2y+1=0\) . Ако се праве \(p \) и \(n\) секу у тачки \(S(x_S,y_S)\) , тада је \(x_S\cdot y_S\) једнако:

    \(   \frac{38}{9}   \)
    \(   \frac{5}{2}   \)  
    \(  9  \)
    \(    \frac{39}{2}   \)  
    \(  7    \)

    Провери одговоре Не знам

  • 11.      

    Збир прва три члана аритметичког низа је \(21\), а разлика трећег и првог члана је \(6\). Осми члан тог низа једнак је:

     

    \( 27\)
    \(26\)
    \(28\)    
    \(24\)        
    \(25\)

    Провери одговоре Не знам

  • 12.      

    Нека је \(a_n\) аритметички низ, \(a_1=4 \). Ако је збир првих пет чланова тог низа \(90,\) тада је \(a_{15}\) једнако:

    \(   100      \)  
    \(    108 \)  
    \( 102  \)
    \(   106   \)
    \(  104    \)

    Провери одговоре Не знам

  • 13.      

     Ако је полином \(P(x)=x^{2014}+x^{2013}+ax+b\) дељив полиномом \(Q(x)=x^2-1\), тада је \(2a-5b\) једнако:


     

    \(-7\)
    \(-3\)  
    \(-12\) 
    \(7\)
    \(3\)

    Провери одговоре Не знам

  • 14.      

    Целих бројева \(x\) за које важи неједналост  \(x+1>\sqrt{5-x}\)  има:
     

     

    \(4\)  
    \(2\)
    \(3\)  
    \(1\)     
    \(5\)  

    Провери одговоре Не знам

  • 15.      

    Површина правог ваљка је \(P = 8\pi cm^2 \), а висина му је за \(1cm\) краћа од пречника основе. Запремина ваљка је:

    \( \frac{40}{27}\pi cm^3 \) 
    \( 5\pi cm^3 \) 
    \( \frac{80}{27}\pi cm^3 \)
    \( \frac{40}{9}\pi cm^3 \) 
    \( 3\pi cm^3 \) 

    Провери одговоре Не знам

  • 16.      

    Целих бројева који припадају скупу решења неједначине \(\frac{3x-16}{-x^2+11x-28} \geq 1\) има:

    \( 3 \)
    \(   4\)
    \(     5    \)   
    \(  2    \)
    бесконачно много 

    Провери одговоре Не знам

  • 17.      

    Ако је \(sin\alpha=\frac{5}{13}, \frac{\pi}{2}<\alpha<\pi, cos\beta=-\frac{3}{5}, \pi<\beta<\frac{3\pi}{2}\) , тада је \(cos(\alpha + \beta)\) једнако:

    \(  \frac{36}{65}   \)
    \(    -\frac{16}{65}     \)  
    \( \frac{56}{65}  \)
    \(     \frac{16}{65}   \)  
    \(   -\frac{56}{65}   \)

    Провери одговоре Не знам

  • 18.      

    Комплексан број  \(\frac{2\cdot i^{2013}}{1+i}\) једнак је:

    \(  1+i \)
    \(   -1-i    \)  
    \(   -1+i     \)
    \(    i  \)  
    \(  1-i   \)

    Провери одговоре Не знам

  • 19.      

    Ако је \(J=\frac{a+b}{a-b}\frac{a-b}{a+b}, a=\sqrt{3}, b=\sqrt{2} \) тада је \(J\) једнако:

     

     \(1+2\sqrt{6}\)
    \(5\)  
    \(10\)
    \(5-2\sqrt{6}\)
    \(1\)    

    Провери одговоре Не знам

  • 20.      

    На колико начина се од 6 девојака и  7 младића може саставити екипа од 5 чланова, тако да у екипи буду 3 девојке и 2 младића?

     

    \(41\)  
    \(945\)  
    \(420\)
    \(128\)    
    \(512\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време