Пријемни испит
Број поена
Економски факултет
Нека је \(S\) скуп свих целобројних вредности параметра \(m\) за које једначина \(x^2-(m-3)x+5+m=0\) има оба решења негативна. Број елемената скупа \(S\) је:
Ако је \(J=\frac{a+b}{a-b}\frac{a-b}{a+b}, a=\sqrt{3}, b=\sqrt{2} \) тада је \(J\) једнако:
Дате су функције \(f_1(x)=\frac{\sqrt{x^4+2x^2+1}}{x^2+1}, f_2(x)=sin^2x+cos^2x, f_3(x)=tgx\cdot ctgx\). Тачан је исказ:
Ако је \(log_23=a \), тада је \(log_64\) једнако:
Дате су функције \(f_1(x)=x, f_2(x)=\sqrt{x^2}\) и \(f_3(x)=(\sqrt{x})^2 .\) Тачан је исказ:
Производ свих реалних решења једначине \(|x|+|x-1|=x+\frac{1}{2}\) једнак је:
Број различитих решења једначине \(1 + \sin 2x - 2\sin x = \cos 2x\) на интервалу \([0,3\pi]\) је:
Шестоцифрених бројева дељивих са 2, код којих су све цифре различите, направљених од цифара 0 , 1, 2 , 3 , 4 , 5 има:
Број свих решења једначине \(log_3(x+1)-log_3(3x-1)+log_3(5x-4)=2log_3(x-2)\) је:
Збир прва три члана аритметичког низа је \(21\), а разлика трећег и првог члана је \(6\). Осми члан тог низа једнак је:
Ако је \(log_\sqrt{5}\), тада је \(log_{10}2\) једнако:
Разлика највећег и намањег решења једначине \(\sqrt{x-3}+\sqrt{8-x}=3\) једнак је:
Ако је \(J=ab+\frac{a^2b+ab^2}{a^2-b^2}(\frac{a^2}{b}-\frac{b^2}{a}); a=1,75 ; b=1,25\) тада је \(J\) једнако:
Производ свих решења једначине \(\sqrt{3x-1}+\sqrt{6-x}=5\) једнак је:
Различитих петоцифрених бројева, у чијем се запису користе две цифре 2 и по једна цифра 3, 4 и 5, има:
Тангенте постављене из тачке \(A(2,4)\) на кружницу \(x^2+y^2=2\) секу осу \(Oy\) у тачкама \(B\) и \(C\). Површина троугла \(ABC\) једнака је:
Комплексни број \(\frac{11+2i}{3-4i}\) једнак је:
Комплексан број \(\frac{2\cdot i^{2013}}{1+i}\) једнак је:
Ако су странице троугла \(a=1, b=3\sqrt{2}, c=5\), тада је највећи угао једнак:
Ако је лопта запремине \(V_1\) уписана у коцку запремине \(V_2\) , тада је \(\frac{V_1}{V_2}\) једнако:
Тренутно нема података за приказ графикона!
Попуните образац за слање ваших резултата вашем наставнику.