Задаци

  • 1.      


     Број решења једначине \(2\sin^2x=\sin2x\) на интервалу \([-\pi,\pi]\) једнак је

    5
    4
    3      
    6

    Провери одговоре Не знам

  • 2.      

    У троуглу су странице \(b=3\sqrt{3}\) и \(c= 6\) , а најмањи угао \(\alpha=\frac{\pi}{6} \). Ако је трећа страница \(a < b\) , тада је \(a\) једнако:

    \( 3 \)
    \(    2     \) 
    \(   \frac{5}{2}    \)
    \(     \frac{3}{2}    \)  
    \(  2\sqrt{3}    \)

    Провери одговоре Не знам

  • 3.      

     Ако је полином \(P(x)=x^{2014}+x^{2013}+ax+b\) дељив полиномом \(Q(x)=x^2-1\), тада је \(2a-5b\) једнако:


     

    \(7\)
    \(3\)
    \(-12\) 
    \(-3\)  
    \(-7\)

    Провери одговоре Не знам

  • 4.      

    Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+10\sqrt{3}x+6\sqrt{3}=0\) тада је \(\frac{1}{x_1}+\frac{1}{x_2}\) једнако:

    \(   \frac{3}{5}     \)
    \(  -\frac{\sqrt{3}}{6}     \)
    \(            \frac{5}{3}          \)  
    \(    -\frac{3}{5}   \)  
    \( -\frac{5}{3}     \)

    Провери одговоре Не знам

  • 5.      

    Број различитих решења једначине \(1 + \sin 2x - 2\sin x = \cos 2x\) на интервалу \([0,3\pi]\) је:

    \(   4\)
    \(  3    \)
    \(     5    \)  
    \( 6 \)
    \(    2     \)  

    Провери одговоре Не знам

  • 6.      

    Ако је \(J=ab+\frac{a^2b+ab^2}{a^2-b^2}(\frac{a^2}{b}-\frac{b^2}{a}); a=1,75 ; b=1,25\) тада је \(J\) једнако:

    \(   \frac{1}{4}          \)
    \(  9     \)
    \(  1      \)
    \(    4   \)  
    \(    \frac{37}{8}      \)  

    Провери одговоре Не знам

  • 7.      

    Нека је \(a_n\) аритметички низ, \(a_1=4 \). Ако је збир првих пет чланова тог низа \(90,\) тада је \(a_{15}\) једнако:

    \(   100      \)  
    \(  104    \)
    \( 102  \)
    \(   106   \)
    \(    108 \)  

    Провери одговоре Не знам

  • 8.      

    Површина правог ваљка је \(P = 8\pi cm^2 \), а висина му је за \(1cm\) краћа од пречника основе. Запремина ваљка је:

    \( \frac{80}{27}\pi cm^3 \)
    \( 5\pi cm^3 \) 
    \( \frac{40}{27}\pi cm^3 \) 
    \( \frac{40}{9}\pi cm^3 \) 
    \( 3\pi cm^3 \) 

    Провери одговоре Не знам

  • 9.      

     Ако је \((a,b]\cup(c,d]\) решење неједначине \(\frac{x^2+x-28}{x^2-4x-5}\geq2\), тада је \(a+b+c+d\) једнако:

     

    \(15\)  
    \(16\)
    \(13\)
    \(12\)    
    \(14\)  

    Провери одговоре Не знам

  • 10.      

    Ако је \(J=\frac{a+b}{a-b}\frac{a-b}{a+b}, a=\sqrt{3}, b=\sqrt{2} \) тада је \(J\) једнако:

     

    \(5\)  
    \(10\)
    \(1\)    
    \(5-2\sqrt{6}\)
     \(1+2\sqrt{6}\)

    Провери одговоре Не знам

  • 11.      

    Дате су тачке \(A(1,2), B(4,-7), C(6,-3).\) Ако је \(D(x_0, y_0)\) подножје висине спуштене из тачке \(C\) на страницу \(AB\), троугла \(ABC\) тада је \(x_0\cdot y_0\) једнако:

     

    \(-12\)
    \(4\)
    \(-6 \)        
     \( 8\)
    \( 16\)

    Провери одговоре Не знам

  • 12.      

    Ако је \((x ,y), x, y\in R, 0 < x \leq y\), решење система једначина \(x^2+y^2=51, xy=12\) тада је \(y - x^3\) једнако:

    \( \sqrt{3}  \)
    \(  1       \)
    \(     2\sqrt{3}       \)  
    \(    -\sqrt{3}        \)  
    \(   -1    \)

    Провери одговоре Не знам

  • 13.      

     Ако су странице троугла \(a=1, b=3\sqrt{2}, c=5\), тада је највећи угао једнак:

     

    \(\frac{5\pi}{12}\)        
    \(\frac{\pi}{2}\)
     \(\frac{2\pi}{3}\)
    \(\frac{5\pi}{6}   \) 
    \(\frac{3\pi}{4} \) 

    Провери одговоре Не знам

  • 14.      

     Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+5x-9=0\), тада је \(x^3_1+x^3_2\) једнако:

    \(170\)
    \(-260\)
    \(10\)  
     \(-170\)
    \(-10\)        

    Провери одговоре Не знам

  • 15.      

    Ако је \(\sin\alpha=\frac{15}{17}, \frac{\pi}{2}<\alpha<\pi\), тада је \(\cos(\frac{\pi}{4}-\alpha)\) једнако:

     
     

    \(\frac{7\sqrt{2}}{34}\) 
    \(-\frac{15\sqrt{2}}{34}\)  
    \(-\frac{23\sqrt{2}}{34}\)    
    \(-\frac{7\sqrt{2}}{34} \)  
    \(\frac{23\sqrt{2}}{34}\)  

    Провери одговоре Не знам

  • 16.      

    Производ свих реалних решења једначине \(|x|+|x-1|=x+\frac{1}{2}\) једнак је:

     

    \(\frac{1}{2}\)  
    \(\frac{5}{6}\)  
    \(\frac{1}{8}\)        
    \(\frac{3}{2} \)   
    \(\frac{3}{4}\)  

    Провери одговоре Не знам

  • 17.      

    Нека је \(S\) скуп свих целобројних вредности параметра \(m\) за које једначина \(x^2-(m-3)x+5+m=0\) има оба решења негативна. Број елемената скупа \(S\) је:

     

    \(7 \)  
    \(6\)  
    \(4\)
    \(>7\)
    \(3\)    

    Провери одговоре Не знам

  • 18.      

    Ако је запремина правог ваљка \(V=6\pi\), а површина његовог омотача \(M=4\pi\), тада је однос полупречника основе \(r \) и висине \(H, \frac{r}{H}\) једнак: 

    \(2,5\)
     \(4\)  
    \(2\)  
    \(4,5\)
    \(3 \)

    Провери одговоре Не знам

  • 19.      

    Дате су функције \(f_1(x)=\frac{\sqrt{x^4+2x^2+1}}{x^2+1}, f_2(x)=sin^2x+cos^2x, f_3(x)=tgx\cdot ctgx\). Тачан је исказ:
     

     

    \(f_1\neq f_2\neq f_3\)    
     \(f_1\neq f_2=f_3\)    
    \(f_3=f_1\neq f_2\)  
    \(f_1=f_2\neq f_3\)  
    \(f_1=f_2=f_3\)    

    Провери одговоре Не знам

  • 20.      

    Из тачке \(A(3,4) \) постављена је нормала \(n\) на праву \(p:4x-2y+1=0\) . Ако се праве \(p \) и \(n\) секу у тачки \(S(x_S,y_S)\) , тада је \(x_S\cdot y_S\) једнако:

    \(   \frac{5}{2}   \)  
    \(    \frac{39}{2}   \)  
    \(  9  \)
    \(   \frac{38}{9}   \)
    \(  7    \)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време