Задаци

  • 1.      

    Комплексни број \(\frac{11+2i}{3-4i}\) једнак је:

     

    \(2-i\)
    \(1+2i\)
     \(1-i\)
    \(1-2i\)  
    \(2+i\)      

    Провери одговоре Не знам

  • 2.      

    Производ свих реалних решења једначине \(|x|+|x-1|=x+\frac{1}{2}\) једнак је:

     

    \(\frac{3}{4}\)  
    \(\frac{1}{8}\)        
    \(\frac{1}{2}\)  
    \(\frac{5}{6}\)  
    \(\frac{3}{2} \)   

    Провери одговоре Не знам

  • 3.      

      Производ свих решења једначине \(4^{x-\frac{1}{x}}+16^{x-\frac{1}{x}}=72\) једнак је:

     

    \(4\)
    \(-1\)
     \(-6\)
    \(6      \)
     \(1\)  

    Провери одговоре Не знам

  • 4.      

    Ако је запремина правог ваљка \(V=6\pi\), а површина његовог омотача \(M=4\pi\), тада је однос полупречника основе \(r \) и висине \(H, \frac{r}{H}\) једнак: 

    \(2,5\)
    \(2\)  
    \(4,5\)
     \(4\)  
    \(3 \)

    Провери одговоре Не знам

  • 5.      

    Ако је \(J=\frac{a+b}{a-b}\frac{a-b}{a+b}, a=\sqrt{3}, b=\sqrt{2} \) тада је \(J\) једнако:

     

     \(1+2\sqrt{6}\)
    \(5-2\sqrt{6}\)
    \(1\)    
    \(10\)
    \(5\)  

    Провери одговоре Не знам

  • 6.      


     Број решења једначине \(2\sin^2x=\sin2x\) на интервалу \([-\pi,\pi]\) једнак је

    3      
    5
    4
    6

    Провери одговоре Не знам

  • 7.      

    Производ свих реалних решења једначине \(3|x|=12-x\) једнак је:

    \(    6\) 
    \(  -18     \)
    \(  -12     \)
    \(   -6\)
    \(    3  \) 

    Провери одговоре Не знам

  • 8.      

    Ако је \(\sin\alpha=\frac{15}{17}, \frac{\pi}{2}<\alpha<\pi\), тада је \(\cos(\frac{\pi}{4}-\alpha)\) једнако:

     
     

    \(\frac{7\sqrt{2}}{34}\) 
    \(-\frac{23\sqrt{2}}{34}\)    
    \(-\frac{7\sqrt{2}}{34} \)  
    \(\frac{23\sqrt{2}}{34}\)  
    \(-\frac{15\sqrt{2}}{34}\)  

    Провери одговоре Не знам

  • 9.      

    Збир прва три члана аритметичког низа је \(21\), а разлика трећег и првог члана је \(6\). Осми члан тог низа једнак је:

     

    \(28\)    
    \(26\)
    \(24\)        
    \(25\)
    \( 27\)

    Провери одговоре Не знам

  • 10.      

    Из тачке \(A(3,4) \) постављена је нормала \(n\) на праву \(p:4x-2y+1=0\) . Ако се праве \(p \) и \(n\) секу у тачки \(S(x_S,y_S)\) , тада је \(x_S\cdot y_S\) једнако:

    \(   \frac{38}{9}   \)
    \(  9  \)
    \(   \frac{5}{2}   \)  
    \(  7    \)
    \(    \frac{39}{2}   \)  

    Провери одговоре Не знам

  • 11.      

    Дате су функције \(f_1(x)=\frac{\sqrt{x^4+2x^2+1}}{x^2+1}, f_2(x)=sin^2x+cos^2x, f_3(x)=tgx\cdot ctgx\). Тачан је исказ:
     

     

    \(f_1=f_2=f_3\)    
    \(f_3=f_1\neq f_2\)  
    \(f_1=f_2\neq f_3\)  
     \(f_1\neq f_2=f_3\)    
    \(f_1\neq f_2\neq f_3\)    

    Провери одговоре Не знам

  • 12.      

    Ако је \(log_23=a \), тада је \(log_64\) једнако:

    \( \frac{1}{2(1+a)}  \)  
    \(       \frac{1}{2+a}     \)  
    \(  -2(1+a) \)
    \(  \frac{2}{1+a}  \)
    \(   \frac{1}{1+2a}       \)

    Провери одговоре Не знам

  • 13.      

    Ако је \(J=ab+\frac{a^2b+ab^2}{a^2-b^2}(\frac{a^2}{b}-\frac{b^2}{a}); a=1,75 ; b=1,25\) тада је \(J\) једнако:

    \(   \frac{1}{4}          \)
    \(    \frac{37}{8}      \)  
    \(  9     \)
    \(    4   \)  
    \(  1      \)

    Провери одговоре Не знам

  • 14.      

    Ако је \((x ,y), x, y\in R, 0 < x \leq y\), решење система једначина \(x^2+y^2=51, xy=12\) тада је \(y - x^3\) једнако:

    \(   -1    \)
    \(  1       \)
    \(     2\sqrt{3}       \)  
    \( \sqrt{3}  \)
    \(    -\sqrt{3}        \)  

    Провери одговоре Не знам

  • 15.      

    Површина правог ваљка је \(P = 8\pi cm^2 \), а висина му је за \(1cm\) краћа од пречника основе. Запремина ваљка је:

    \( 3\pi cm^3 \) 
    \( 5\pi cm^3 \) 
    \( \frac{80}{27}\pi cm^3 \)
    \( \frac{40}{27}\pi cm^3 \) 
    \( \frac{40}{9}\pi cm^3 \) 

    Провери одговоре Не знам

  • 16.      

     Ако су странице троугла \(a=1, b=3\sqrt{2}, c=5\), тада је највећи угао једнак:

     

    \(\frac{5\pi}{6}   \) 
     \(\frac{2\pi}{3}\)
    \(\frac{5\pi}{12}\)        
    \(\frac{\pi}{2}\)
    \(\frac{3\pi}{4} \) 

    Провери одговоре Не знам

  • 17.      

    Производ свих решења једначине \(\sqrt{3x-1}+\sqrt{6-x}=5\) једнак је:

    \(  \frac{15}{4}      \)
    \(        5\)  
    \(    20  \)  
    \( \frac{75}{4}      \)
    \(   \frac{45}{2}     \)

    Провери одговоре Не знам

  • 18.      

    Различитих петоцифрених бројева, у чијем се запису користе две цифре 2 и по једна цифра 3, 4 и 5, има:

    \(  30    \)
    \(   40 \)
    \(     240    \)   
    \(    120     \)
    \( 60 \)

    Провери одговоре Не знам

  • 19.      

    Дате су тачке \(A(1,2), B(4,-7), C(6,-3).\) Ако је \(D(x_0, y_0)\) подножје висине спуштене из тачке \(C\) на страницу \(AB\), троугла \(ABC\) тада је \(x_0\cdot y_0\) једнако:

     

    \( 16\)
    \(-12\)
     \( 8\)
    \(4\)
    \(-6 \)        

    Провери одговоре Не знам

  • 20.      

    Дате су функције \(f_1(x)=x, f_2(x)=\sqrt{x^2}\) и \(f_3(x)=(\sqrt{x})^2 .\) Тачан је исказ:

    \(  f_1 = f_2 = f_3  \)
    \(   f_1 \neq f_2 = f_3   \)
    \( f_1 = f_2 \neq f_3    \) 
    \(   f_3 = f_1 \neq f_2   \)  
    \(  f_1\neq f_2 \neq f_3 \neq f_1 \)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време