Задаци

  • 1.      

    Збир прва три члана аритметичког низа је \(21\), а разлика трећег и првог члана је \(6\). Осми члан тог низа једнак је:

     

    \(26\)
    \(25\)
    \(24\)        
    \(28\)    
    \( 27\)

    Провери одговоре Не знам

  • 2.      

    Производ свих реалних решења једначине \(3|x|=12-x\) једнак је:

    \(    6\) 
    \(    3  \) 
    \(  -12     \)
    \(  -18     \)
    \(   -6\)

    Провери одговоре Не знам

  • 3.      

    Ако је \(\sin\alpha=\frac{15}{17}, \frac{\pi}{2}<\alpha<\pi\), тада је \(\cos(\frac{\pi}{4}-\alpha)\) једнако:

     
     

    \(-\frac{7\sqrt{2}}{34} \)  
    \(-\frac{15\sqrt{2}}{34}\)  
    \(\frac{7\sqrt{2}}{34}\) 
    \(-\frac{23\sqrt{2}}{34}\)    
    \(\frac{23\sqrt{2}}{34}\)  

    Провери одговоре Не знам

  • 4.      

    Број различитих решења једначине \(1 + \sin 2x - 2\sin x = \cos 2x\) на интервалу \([0,3\pi]\) је:

    \(    2     \)  
    \( 6 \)
    \(  3    \)
    \(     5    \)  
    \(   4\)

    Провери одговоре Не знам

  • 5.      

    Ако је запремина правог ваљка \(V=6\pi\), а површина његовог омотача \(M=4\pi\), тада је однос полупречника основе \(r \) и висине \(H, \frac{r}{H}\) једнак: 

    \(3 \)
    \(4,5\)
     \(4\)  
    \(2\)  
    \(2,5\)

    Провери одговоре Не знам

  • 6.      

    Ако за комплексан број \(z\) важи \(\left | z-3 \right |=\left | z-3+2i \right |\) и \(\left | z-2i \right |=\left | z+4-2i \right | ,\) где је \(i^{2}=-1 ,\) тада је:

    \(\left | z \right |=\sqrt{5} \)
    \(\left | z \right |=5 \)
    \(\left | z \right |=3 \)
    \(\left | z \right |=2\sqrt{5} \)
    \(\left | z \right |=2 \)

    Провери одговоре Не знам

  • 7.      

    Ако је \(\left (\frac{55}{84}:x+1\frac{1}{2}\right)\cdot\frac{5}{33}=2\frac{1}{2}\) , онда је \(x\) једнако:
     

     

    \(\frac{101}{251}\)   
    \(\frac{11}{25}\)   
    \(\frac{23}{33}\)
    \(\frac{11}{252}\)
    \(\frac{31}{84}\)

    Провери одговоре Не знам

  • 8.      

    Различитих петоцифрених бројева, у чијем се запису користе две цифре 2 и по једна цифра 3, 4 и 5, има:

    \(   40 \)
    \( 60 \)
    \(    120     \)
    \(  30    \)
    \(     240    \)   

    Провери одговоре Не знам

  • 9.      

    Ако је \(J=\frac{a+b}{a-b}\frac{a-b}{a+b}, a=\sqrt{3}, b=\sqrt{2} \) тада је \(J\) једнако:

     

    \(5-2\sqrt{6}\)
    \(1\)    
    \(5\)  
     \(1+2\sqrt{6}\)
    \(10\)

    Провери одговоре Не знам

  • 10.      

     Вредност израза \(\left [ 4^{-1}\left ( \frac{1}{25} \right )^{-\frac{1}{2}}+\left ( \sqrt{(-2)^{2}}-1,8 \right )^{-1} \right ]^{\frac{1}{2}}\cdot \left ( \sqrt[3]{(-1)^{3}}+2,2 \right )\) једнака је:

    \(\frac{8}{5}\)
    \(3\)
    \(\frac{3}{5}\)
    \(5\)  
    \(8\)    

    Провери одговоре Не знам

  • 11.      

    Биномни коефицијент четвртог члана у развоју \(\left (\sqrt[5]{11}+\sqrt[11]{5}  \right )^{n}\) је \(671\) пута већи од биномног коефицијента трећег члана. Број свих чланова у овом развоју који нису цели бројеви једнак је:

    \(1833\)
    \(2015\)
    \(1613\)  
     \(1978\)
    \(1979\)

    Провери одговоре Не знам

  • 12.      

    Скуп свих решења неједначине \(\frac{|x-2|}{x^2-3x+2}\geq 2\) у скупу реалних бројева je:

     

    \((1,3)\) 
    \((-\infty, \frac{1}{2}]\)          
    \((-\infty, \frac{1}{2}]\cup (1,+\infty)\)
    \((1,+\infty)\)  
    \([\frac{1}{2},1]\)

    Провери одговоре Не знам

  • 13.      

    Број целобројних решења неједначине \(\frac{x^{2}-5x-5}{x^{2}+x-10}<-1\) је:

    \(4\) 
    \(1\)
    \(3\)
    \(0\) 
    \(2\)

    Провери одговоре Не знам

  • 14.      

    На сајму књига првог дана је продато \(40\%\) књига мање него другог дана, а трећег за четвртину мање него првог и другог дана заједно. Ако је прва три дана укупно продато \(10500\) књига, онда је првог дана овог сајма продато:
     

    2550 књига
    2700 књига
    2250 књига
    2100 књига
    2400 књига

    Провери одговоре Не знам

  • 15.      

     У биномном развоју  \((x^3+\frac{1}{x})^{12}\), члан који не садржи \(x\) је:

     

     пети
    девети
    седми
     десети
    једанаести

    Провери одговоре Не знам

  • 16.      

    Први члан геометријске прогресије је \(a_1=3\) а шести члан је \(a_6=96\) . Збир првих десет чланова \(S_10\) је:

    \( 1023 \) 
    \( 6160 \) 
    \( 3069 \)
    \( 3080 \) 
    \( 369 \) 

    Провери одговоре Не знам

  • 17.      

     Угао између правих \( p : x - 3y + 5 = 0\) и \(q : 2x - y - 3 = 0\) je:

     \(120^{\circ}\)   
    \(60^{\circ}\)
    \(45^{\circ}\) 
    \(30^{\circ}\)  
    \(90^{\circ}\)

    Провери одговоре Не знам

  • 18.      

    Вредност израза \(\frac{\cos 100^o+\sin 50^o}{\sin 200^o}\) једнака је:

    \(-\sqrt{2} \)
    \(-\sqrt{3} \)
    \(\sqrt{2} \)
    \(-2 \)
    \(\sqrt{3} \)

    Провери одговоре Не знам

  • 19.      

    Једначина тангентне елипсе \(\frac{x^2}{16}+\frac{y^2}{12}=1\) која пролази кроз тачку \(A(2,3)\) гласи:

    \( 2x – y – 1 = 0 \) 
    \( 2x + y – 7 = 0 \) 
    \( 3x+ 2y – 1 = 0 \) 
    \( x+ 2y – 8 = 0 \)
    \( x – 2y + 4 = 0 \) 

    Провери одговоре Не знам

  • 20.      

     Ако је \((a,b]\cup(c,d]\) решење неједначине \(\frac{x^2+x-28}{x^2-4x-5}\geq2\), тада је \(a+b+c+d\) једнако:

     

    \(14\)  
    \(13\)
    \(12\)    
    \(15\)  
    \(16\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време