Пријемни испит
Број поена
Саобраћајни, Технички, Машински и Факултет организационих наука
Дужина крака једнокраког троугла је \(5cm\), а висине која одговара основици \(3cm\). У тај троугао уписан је правоугаоник максималне површине тако да једна страница правоугаоника припада основици троугла. Обим тог правоугаоника је:
Ако је у аритметичкој прогресији први члан \(a_1=16\), а збир првих девет чланова \(S_9=0\), тада је збир првих \(19\) чланова \(S_{19}\):
На колико начина се од 6 девојака и 7 младића може саставити екипа од 5 чланова, тако да у екипи буду 3 девојке и 2 младића?
Збир прва три члана аритметичког низа је \(21\), а разлика трећег и првог члана је \(6\). Осми члан тог низа једнак је:
Збир свих решења једначине \(2^{x^2-3x}+(\frac{1}{2})^{x^2-3x-4}=17\) једнак је:
Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+5x-9=0\), тада је \(x^3_1+x^3_2\) једнако:
Скуп свих решења неједначине \(2x+|x-1|<2\) у скупу реалних бројева је:
Разлика највећег и намањег решења једначине \(\sqrt{x-3}+\sqrt{8-x}=3\) једнак је:
За \(a > 0\), \(b > 0\) и \(a\neq b\) , израз \(\left ( \frac{1}{\sqrt{a}-\sqrt{b}}-\frac{2\sqrt{a}}{\sqrt{a^{3}}+\sqrt{b^{3}}}:\frac{\sqrt{a}-\sqrt{b}}{a-\sqrt{ab}+b} \right )\cdot \left ( a+b+2\sqrt{ab} \right ) \) идентички је једнак изразу:
Производ свих решења једначине \(2+4^{\sqrt{x^{2}-3}+x-3}=6\cdot 2^{\sqrt{x^{2}-3}+x-4} \) једнак је:
Ако је права \(p : y = 2x + n\) тангента кружнице \(k : x^2 + y^2 = 5\), тада је \(n\) једнако:
Реално решење једначине \(\sqrt{3x+2}-\sqrt{2x-2}=\sqrt{x} \) припада интервалу:
Укупна цена две књиге износи \(2600\) . Уколико би се цена прве књиге увећала за \(150\) динара и цена друге умањила за \(150\) динара, тада би цена друге износила \(30\%\) цене прве књиге. Разлика цене прве и друге књиге (у динарима) једнака је:
Ако је \(a=225^{\frac{1}{2}-\log_{15}\sqrt[4]{9}}\) онда је \((a-4)^{a}\) једнако:
Решење једначине \(log_2(3x-7)=5\) je:
Збир највећег негативног и најмањег позитивног решења неједначине \(\cos ^{4}x-\sin ^{4}x=1+\sin x\) је:
У биномном развоју \((x^3+\frac{1}{x})^{12}\), члан који не садржи \(x\) је:
Број свих решења једначине \(log_3(x+1)-log_3(3x-1)+log_3(5x-4)=2log_3(x-2)\) је:
Збир квадрата свих решења једначине \( |x + 4| - |x - 3| = x\) je:
Дата је геометријска прогресија \(a_1, a_2, a_3, . . . \). Ако је \(a_1+a_7 =\frac{65}{16}\) и \(a_2+a_8 =\frac{65}{32}\) , онда је \(\frac{ a_3}{ a_{13}} \) једнако:
Тренутно нема података за приказ графикона!
Попуните образац за слање ваших резултата вашем наставнику.