Задаци

  • 1.      

    Збир квадрата свих решења једначине \( |x + 4| - |x - 3| = x\) je:


     
     

     \(100\)
    \(41\)       
    \(50\)
    \(59\)
    \(99\)

    Провери одговоре Не знам

  • 2.      

    Скуп решења неједначине \(\log_{\frac{1}{2}}(x^{2}-2x+1)>\log_{2}\frac{1}{4}\) је:

    \((1,3)\)  
     \((-1,0)\)
    \((0,3)\)
    \((-1,3)\)
    \((-1,1)\cup (1,3)\)

    Провери одговоре Не знам

  • 3.      

     Дата је геометријска прогресија \(a_1, a_2, a_3, . . . \). Ако је \(a_1+a_7 =\frac{65}{16}\) и \(a_2+a_8 =\frac{65}{32}\) , онда је \(\frac{ a_3}{ a_{13}} \) једнако:

    \(2^{12} \)
    \(2^{13} \)
    \(2^{-10} \)
    \(2^{10} \)
    \(2^{-12} \)

    Провери одговоре Не знам

  • 4.      

    Разлика највећег и намањег решења једначине \(\sqrt{x-3}+\sqrt{8-x}=3\) једнак је:

    \(2\)
    \(3\)
    \(5 \)  
    \(4\)  
    \( 1 \)  

    Провери одговоре Не знам

  • 5.      

    Ако се број страница конвексног \(n\)-тоугла повећа зa \(7\), број дијагонала му се повећа за \(119\). Број \(n\) износи:

     

    \(17\)
     \(13\)
     \(14\)  
    \(15\)
    \(12\)      

    Провери одговоре Не знам

  • 6.      

    Нека је \(S\) скуп свих целобројних вредности параметра \(m\) за које једначина \(x^2-(m-3)x+5+m=0\) има оба решења негативна. Број елемената скупа \(S\) је:

     

    \(6\)  
    \(4\)
    \(>7\)
    \(7 \)  
    \(3\)    

    Провери одговоре Не знам

  • 7.      

    Број свих целобројних решења неједначине \(\frac{4x^{2}-5x-39}{x^{2}-x-12}\leqslant 3\) је:

    \(2\)
    \(3 \)
    \(6\)
    \(0 \)
    \(1 \)

    Провери одговоре Не знам

  • 8.      

    Број свих петоцифрених бројева дељивих са 5, који имају тачно једну непарну цифру, једнак је:

    \(18\cdot 5^{3}\)
    \(21\cdot 5^{3}\)
    \(4\cdot 5^{4}\)
    \(55\cdot 5^{2}\)
    \(24\cdot 5^{3}\)

    Провери одговоре Не знам

  • 9.      

    На колико начина се од 6 девојака и  7 младића може саставити екипа од 5 чланова, тако да у екипи буду 3 девојке и 2 младића?

     

    \(420\)
    \(41\)  
    \(128\)    
    \(945\)  
    \(512\)

    Провери одговоре Не знам

  • 10.      

     Ако је \(a=225^{\frac{1}{2}-\log_{15}\sqrt[4]{9}}\) онда је \((a-4)^{a}\) једнако:

    \(0 \)
    \(64 \)
    \(1 \)
    \(-1 \)
    [math]4 [/math

    Провери одговоре Не знам

  • 11.      

    Ако је \(log_23=a \), тада је \(log_64\) једнако:

    \(       \frac{1}{2+a}     \)  
    \(  \frac{2}{1+a}  \)
    \(   \frac{1}{1+2a}       \)
    \(  -2(1+a) \)
    \( \frac{1}{2(1+a)}  \)  

    Провери одговоре Не знам

  • 12.      

    Ако је лопта запремине \(V_1\) уписана у коцку запремине \(V_2\) , тада је \(\frac{V_1}{V_2}\) једнако:

    \(   \frac{\pi}{4}    \)  
    \(   \frac{\pi}{3} \)
    \(  \frac{\pi}{6}  \)
    \(    \frac{2\pi}{9}    \) 
    \(  \frac{\pi}{8}    \)

    Провери одговоре Не знам

  • 13.      

      Производ свих решења једначине \(4^{x-\frac{1}{x}}+16^{x-\frac{1}{x}}=72\) једнак је:

     

     \(1\)  
     \(-6\)
    \(4\)
    \(-1\)
    \(6      \)

    Провери одговоре Не знам

  • 14.      

    Укупна цена две књиге износи \(2600\) . Уколико би се цена прве књиге увећала за \(150\) динара и цена друге умањила за \(150\) динара, тада би цена друге износила \(30\%\) цене прве књиге. Разлика цене прве и друге књиге (у динарима) једнака је:

    \(1250 \)
    \(1100 \)
    \(1150 \)
    \(1050 \)
    \(1200 \)

    Провери одговоре Не знам

  • 15.      

    Једначина праве која пролази кроз тачке \(A(-1,1)\) и \(B(1,4)\) гласи:

    \( 2x - 3y + 5 = 0 \) 
    \( x – 2y + 5 = 0 \) 
    \( 3x – 2y + 5 = 0 \)
    \( x – y + 2 = 0 \) 
    \( 3x + 2y - 5 = 0 \) 

    Провери одговоре Не знам

  • 16.      

    Дужина крака једнокраког троугла је \(5cm\), а висине која одговара основици \(3cm\). У тај троугао уписан је правоугаоник максималне површине тако да једна страница правоугаоника припада основици троугла. Обим тог правоугаоника је:

    10 cm
    8 cm
    7 cm
    11 cm
    9 cm

    Провери одговоре Не знам

  • 17.      

    Једначина тангентне елипсе \(\frac{x^2}{16}+\frac{y^2}{12}=1\) која пролази кроз тачку \(A(2,3)\) гласи:

    \( 2x – y – 1 = 0 \) 
    \( x+ 2y – 8 = 0 \)
    \( 2x + y – 7 = 0 \) 
    \( x – 2y + 4 = 0 \) 
    \( 3x+ 2y – 1 = 0 \) 

    Провери одговоре Не знам

  • 18.      

    Ако за комплексан број \(z\) важи \(\frac{\left | z-1+i \right |}{\left | z-2+2i \right |}=1\) и \(\frac{\left | z \right |}{\left | z-1-i \right |}=1\), гдеје \( i^2 = -1\), тада је \(Im(\bar{z}\cdot i)\) једнак:

     

    \(-2\)
    \(1\)       
    \(0\)
    \(2\)
    \(-1\)  

    Провери одговоре Не знам

  • 19.      

     Све вредности параметра \(p\) , за које за решења \(x_1\) и \(x_2\) једначине \(x^2-px+6=0\) важи релација \(x_1-x_2 = 1\) , припадају скупу:

    \( (-6,6) \)
    \( (-4,4) \) 
    \( (-1,6) \) 
    \( (4,10) \) 
    \( (-10,-4) \) 

    Провери одговоре Не знам

  • 20.      


     Број решења једначине \(2\sin^2x=\sin2x\) на интервалу \([-\pi,\pi]\) једнак је

    4
    3      
    5
    6

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време