Задаци

  • 1.      

     Ако је збир првих једанаест чланова геометријске прогресије \(S_{11}= 6141\), a количник \(q = 2\), први члан \(a_1\) је:

     

    \(1\)
    \(3\)
    \(7\)      
    \(5\)  
    \(4\)  

    Провери одговоре Не знам

  • 2.      

    Број реалних решења једначине \( \log \sqrt{x-2}+3\log \sqrt{x+2}=\frac{1}{2}+\log \sqrt{x^{2}-4}\)  је:

    \(2\)
    \(1\)
    \(3\)
    \(4\)    
    \(0\)

    Провери одговоре Не знам

  • 3.      

    Производ свих решења једначине \(\sqrt{3x-1}+\sqrt{6-x}=5\) једнак је:

    \(  \frac{15}{4}      \)
    \( \frac{75}{4}      \)
    \(   \frac{45}{2}     \)
    \(    20  \)  
    \(        5\)  

    Провери одговоре Не знам

  • 4.      

     Производ свих решења једначине \(2+4^{\sqrt{x^{2}-3}+x-3}=6\cdot 2^{\sqrt{x^{2}-3}+x-4} \) једнак је:

    \(4 \)
    \(\frac{19}{2} \)
    \(\frac{19}{4} \)
    \(16 \)
    \(8 \)

    Провери одговоре Не знам

  • 5.      

     Реално решење једначине \(\sqrt{3x+2}-\sqrt{2x-2}=\sqrt{x} \) припада интервалу:

    \(\left (2,3 \right ]\)
    \(\left (0,1 \right ]\)
    \(\left (1,2 \right ]\)
    \(\left ( -\infty \right ]\)
    \((3,+ \infty) \)

    Провери одговоре Не знам

  • 6.      

    У развоју \(\left ( \sqrt[4]{3}+\sqrt[3]{2} \right )^{2012}\) број чланова који су цели бројеви једнак је:

    \(671 \)
    \(504 \)
    \(167 \)
    \(168 \)
    \(503\)

    Провери одговоре Не знам

  • 7.      

    Ако је \(J=ab+\frac{a^2b+ab^2}{a^2-b^2}(\frac{a^2}{b}-\frac{b^2}{a}); a=1,75 ; b=1,25\) тада је \(J\) једнако:

    \(  9     \)
    \(    4   \)  
    \(   \frac{1}{4}          \)
    \(    \frac{37}{8}      \)  
    \(  1      \)

    Провери одговоре Не знам

  • 8.      

    Шестоцифрених бројева дељивих са 2, код којих су све цифре различите, направљених од цифара 0 , 1, 2 , 3 , 4 , 5 има:

    \(            288      \)  
    \( 312   \)
    \(  360    \)
    \(    216  \)  
    \(   120   \)

    Провери одговоре Не знам

  • 9.      

    Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+10\sqrt{3}x+6\sqrt{3}=0\) тада је \(\frac{1}{x_1}+\frac{1}{x_2}\) једнако:

    \( -\frac{5}{3}     \)
    \(  -\frac{\sqrt{3}}{6}     \)
    \(   \frac{3}{5}     \)
    \(    -\frac{3}{5}   \)  
    \(            \frac{5}{3}          \)  

    Провери одговоре Не знам

  • 10.      

    Збир свих решења једначине \(\cos ^{2}\frac{\alpha }{2}+\cos ^{2}\alpha =\frac{1}{2}\) која припадају интервалу \((\pi ,2\pi )\) једнак је:

    \(\frac{11\pi }{2}\)
    \(3\pi \)
    \(\frac{11\pi }{4}\)
    \(\frac{17\pi }{6} \)
    \(\frac{13\pi }{3} \)

    Провери одговоре Не знам

  • 11.      

     Број решења једначине \( \sin(x-\frac{\pi}{3})=\frac{1}{2}\) у интервалу \([-2\pi, 2\pi]\) je:

     

    \(4\)
    \(3\)
    \(5\)    
    \(1\)
    \(2\)  

    Провери одговоре Не знам

  • 12.      

    Дате су функције \(f_1(x)=x, f_2(x)=\sqrt{x^2}\) и \(f_3(x)=(\sqrt{x})^2 .\) Тачан је исказ:

    \(  f_1 = f_2 = f_3  \)
    \( f_1 = f_2 \neq f_3    \) 
    \(   f_3 = f_1 \neq f_2   \)  
    \(  f_1\neq f_2 \neq f_3 \neq f_1 \)
    \(   f_1 \neq f_2 = f_3   \)

    Провери одговоре Не знам

  • 13.      

    Различитих петоцифрених бројева, у чијем се запису користе две цифре 2 и по једна цифра 3, 4 и 5, има:

    \(     240    \)   
    \( 60 \)
    \(  30    \)
    \(   40 \)
    \(    120     \)

    Провери одговоре Не знам

  • 14.      

    Број различитих решења једначине \(1 + \sin 2x - 2\sin x = \cos 2x\) на интервалу \([0,3\pi]\) је:

    \(  3    \)
    \( 6 \)
    \(     5    \)  
    \(   4\)
    \(    2     \)  

    Провери одговоре Не знам

  • 15.      

    Око праве правилне четворостране призме запремине \(128 cm^3\) описан је кружни ваљак тако да основа призме припадају одговарајућим основама ваљка. Запремина тог ваљка ( у \(cm^3\) ) износи:

    \(72\pi \)
    \(64 \pi \)
    \(56\pi \)
    \(32\sqrt{3}\pi \)
    \(48\pi\)

    Провери одговоре Не знам

  • 16.      

    У троуглу су странице \(b=3\sqrt{3}\) и \(c= 6\) , а најмањи угао \(\alpha=\frac{\pi}{6} \). Ако је трећа страница \(a < b\) , тада је \(a\) једнако:

    \(  2\sqrt{3}    \)
    \(    2     \) 
    \(     \frac{3}{2}    \)  
    \(   \frac{5}{2}    \)
    \( 3 \)

    Провери одговоре Не знам

  • 17.      

    Број решења једначине \(|x-1|+2x=5\) је:

    \( 2 \) 
      више од\( 4 \) 
    \( 3 \) 
    \( 4 \) 
    \( 1 \)

    Провери одговоре Не знам

  • 18.      

    Нека је \(a_n\) аритметички низ, \(a_1=4 \). Ако је збир првих пет чланова тог низа \(90,\) тада је \(a_{15}\) једнако:

    \(    108 \)  
    \(   100      \)  
    \( 102  \)
    \(   106   \)
    \(  104    \)

    Провери одговоре Не знам

  • 19.      

    Вредност израза \(((\frac{7}{9}-\frac{7}{9}):1,25+(\frac{6}{7}-\frac{17}{28}):(0,358-0,108))\cdot1,6 - \frac{19}{25}\) je:

    \( 2 \) 
    \( 3 \) 
    \( 1 \)
    \( \frac{3}{28} \) 
    \( 0,5 \) 

    Провери одговоре Не знам

  • 20.      

    Ако је права \(p : y = 2x + n\) тангента кружнице \(k : x^2 + y^2 = 5\), тада је \(n\) једнако:
     

    \(\pm4\)  
    \(\pm3\)  
    \(\pm5\)
    \(\pm6\)  
    \(\pm7\)  

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време