Задаци

  • 1.      

    Ако за комплексан број \(z\) важи \(\left | z-3 \right |=\left | z-3+2i \right |\) и \(\left | z-2i \right |=\left | z+4-2i \right | ,\) где је \(i^{2}=-1 ,\) тада је:

    \(\left | z \right |=2\sqrt{5} \)
    \(\left | z \right |=\sqrt{5} \)
    \(\left | z \right |=2 \)
    \(\left | z \right |=3 \)
    \(\left | z \right |=5 \)

    Провери одговоре Не знам

  • 2.      

     Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+5x-9=0\), тада је \(x^3_1+x^3_2\) једнако:

    \(10\)  
     \(-170\)
    \(170\)
    \(-10\)        
    \(-260\)

    Провери одговоре Не знам

  • 3.      

    Ако је права \(p : y = 2x + n\) тангента кружнице \(k : x^2 + y^2 = 5\), тада је \(n\) једнако:
     

    \(\pm6\)  
    \(\pm7\)  
    \(\pm5\)
    \(\pm3\)  
    \(\pm4\)  

    Провери одговоре Не знам

  • 4.      

    Шестоцифрених бројева дељивих са 2, код којих су све цифре различите, направљених од цифара 0 , 1, 2 , 3 , 4 , 5 има:

    \( 312   \)
    \(    216  \)  
    \(  360    \)
    \(   120   \)
    \(            288      \)  

    Провери одговоре Не знам

  • 5.      

    Скуп свих решења неједначине \(2x+|x-1|<2\) у скупу реалних бројева је:

    празан скуп   
    \( (1,2) \) 
    \( (-\infty, 1) \)
    \( (-\infty, -1) \) 
    \( (1, +\infty) \) 

    Провери одговоре Не знам

  • 6.      

    Ако је збир свих решења једначине \(1+\log_{2}(2^{x}-1)=\log_{2^{x}-1}64 ,\) онда је вредност \(2a+3\) једнака:

    \(45 \)
    [math]32 [/math
    \(64 \)
    \(15 \)
    \(30 \)

    Провери одговоре Не знам

  • 7.      

    Скуп свих решења неједначине \(\frac{4x-3}{x-2}>3\) је:

    \( (-\infty,-7)\cup(2,+\infty) \) 
    \( (-\infty,2)\cup(7,+\infty) \) 
    \( (-\infty,-3)\cup(2,+\infty) \)
    \( (2,+\infty) \) 
    \( (-3,+\infty) \) 

    Провери одговоре Не знам

  • 8.      

     Угао између веће основице и крака једнакокраког трапеза једнак је \(60^{o}\) . Ако је дужина те основице једнака \(9 cm ,\) а крака \(4 cm ,\) површина трапеза (у \(cm^2\) ) једнака је:

    \( 24\sqrt{3} \)
    \(16\)
    \(14\sqrt{3} \)
    \(7\sqrt{3} \)
    \(18 \)

    Провери одговоре Не знам

  • 9.      

    Ако је \(sin\alpha=\frac{5}{13}, \frac{\pi}{2}<\alpha<\pi, cos\beta=-\frac{3}{5}, \pi<\beta<\frac{3\pi}{2}\) , тада је \(cos(\alpha + \beta)\) једнако:

    \(    -\frac{16}{65}     \)  
    \(  \frac{36}{65}   \)
    \(   -\frac{56}{65}   \)
    \(     \frac{16}{65}   \)  
    \( \frac{56}{65}  \)

    Провери одговоре Не знам

  • 10.      

    Једначина тангентне елипсе \(\frac{x^2}{16}+\frac{y^2}{12}=1\) која пролази кроз тачку \(A(2,3)\) гласи:

    \( x – 2y + 4 = 0 \) 
    \( x+ 2y – 8 = 0 \)
    \( 2x + y – 7 = 0 \) 
    \( 2x – y – 1 = 0 \) 
    \( 3x+ 2y – 1 = 0 \) 

    Провери одговоре Не знам

  • 11.      

    Вредност израза \(((\frac{7}{9}-\frac{7}{9}):1,25+(\frac{6}{7}-\frac{17}{28}):(0,358-0,108))\cdot1,6 - \frac{19}{25}\) je:

    \( 1 \)
    \( \frac{3}{28} \) 
    \( 0,5 \) 
    \( 3 \) 
    \( 2 \) 

    Провери одговоре Не знам

  • 12.      

    Скуп свих решења неједначине \(3\cdot 81^{x}+2\cdot 16^{x}\leqslant 5\cdot 36^{x}\) је:

    \(\left [ -\frac{2}{3},0 \right ]\)        
    \(\left [ -\frac{1}{2},0 \right ]\)
    \(\left [ -\frac{4}{9},0 \right ]\)
    \(\left [ -\frac{1}{3},0 \right ]\)  
    \(\left [ -1,0 \right ]\)

    Провери одговоре Не знам

  • 13.      

    На колико начина се од 6 девојака и  7 младића може саставити екипа од 5 чланова, тако да у екипи буду 3 девојке и 2 младића?

     

    \(420\)
    \(41\)  
    \(945\)  
    \(512\)
    \(128\)    

    Провери одговоре Не знам

  • 14.      

     Ако је \((a,b]\cup(c,d]\) решење неједначине \(\frac{x^2+x-28}{x^2-4x-5}\geq2\), тада је \(a+b+c+d\) једнако:

     

    \(12\)    
    \(15\)  
    \(14\)  
    \(13\)
    \(16\)

    Провери одговоре Не знам

  • 15.      

    Производ свих реалних решења једначине \(|x|+|x-1|=x+\frac{1}{2}\) једнак је:

     

    \(\frac{1}{8}\)        
    \(\frac{3}{2} \)   
    \(\frac{5}{6}\)  
    \(\frac{1}{2}\)  
    \(\frac{3}{4}\)  

    Провери одговоре Не знам

  • 16.      

     Скуп свих решења неједначине \(\frac{x-1}{x-3}<\frac{x+8}{x+4}\) je

    \((-4,0)\)
    \((-8,-4)\)
    празан скуп    
    \((-4,3)\) 
     \((-\infty,-4)\cup(3,+\infty)\)    

    Провери одговоре Не знам

  • 17.      

    У троуглу су странице \(b=3\sqrt{3}\) и \(c= 6\) , а најмањи угао \(\alpha=\frac{\pi}{6} \). Ако је трећа страница \(a < b\) , тада је \(a\) једнако:

    \(    2     \) 
    \(     \frac{3}{2}    \)  
    \( 3 \)
    \(  2\sqrt{3}    \)
    \(   \frac{5}{2}    \)

    Провери одговоре Не знам

  • 18.      

    Број решења једначине \(\sqrt{7-x}=x-1\) је:

    \( 1 \)
    више од\( 4 \) 
    \( 2 \) 
    \( 4 \) 
    \( 3 \) 

    Провери одговоре Не знам

  • 19.      

    Ако је \(\left (\frac{55}{84}:x+1\frac{1}{2}\right)\cdot\frac{5}{33}=2\frac{1}{2}\) , онда је \(x\) једнако:
     

     

    \(\frac{11}{25}\)   
    \(\frac{23}{33}\)
    \(\frac{11}{252}\)
    \(\frac{101}{251}\)   
    \(\frac{31}{84}\)

    Провери одговоре Не знам

  • 20.      


     Број решења једначине \(2\sin^2x=\sin2x\) на интервалу \([-\pi,\pi]\) једнак је

    3      
    4
    5
    6

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време