Задаци

  • 1.      

     Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+5x-9=0\), тада је \(x^3_1+x^3_2\) једнако:

    \(170\)
    \(-260\)
    \(-10\)        
    \(10\)  
     \(-170\)

    Провери одговоре Не знам

  • 2.      

    Дате су функције \(f_1(x)=\frac{\sqrt{x^4+2x^2+1}}{x^2+1}, f_2(x)=sin^2x+cos^2x, f_3(x)=tgx\cdot ctgx\). Тачан је исказ:
     

     

     \(f_1\neq f_2=f_3\)    
    \(f_1\neq f_2\neq f_3\)    
    \(f_1=f_2=f_3\)    
    \(f_3=f_1\neq f_2\)  
    \(f_1=f_2\neq f_3\)  

    Провери одговоре Не знам

  • 3.      

    Производ свих решења једначине \(\sqrt{3x-1}+\sqrt{6-x}=5\) једнак је:

    \(    20  \)  
    \(   \frac{45}{2}     \)
    \(  \frac{15}{4}      \)
    \( \frac{75}{4}      \)
    \(        5\)  

    Провери одговоре Не знам

  • 4.      

    На сајму књига првог дана је продато \(40\%\) књига мање него другог дана, а трећег за четвртину мање него првог и другог дана заједно. Ако је прва три дана укупно продато \(10500\) књига, онда је првог дана овог сајма продато:
     

    2100 књига
    2250 књига
    2400 књига
    2550 књига
    2700 књига

    Провери одговоре Не знам

  • 5.      

    Ако је \(\left (\frac{55}{84}:x+1\frac{1}{2}\right)\cdot\frac{5}{33}=2\frac{1}{2}\) , онда је \(x\) једнако:
     

     

    \(\frac{31}{84}\)
    \(\frac{11}{252}\)
    \(\frac{23}{33}\)
    \(\frac{11}{25}\)   
    \(\frac{101}{251}\)   

    Провери одговоре Не знам

  • 6.      

    Збир свих девет чланова аритметичке прогресије је за \(164\) већи од збира првих пет чланова те прогресије. Ако је девети члан за \(14\) мањи од двоструке вредности шестог члана, онда је производ прва два члана дате прогресије једнак:

    \(20\)
    \(16\)
    \(-12\)
    \(12\)
    \(-16\)

    Провери одговоре Не знам

  • 7.      

    Из тачке \(A(3,4) \) постављена је нормала \(n\) на праву \(p:4x-2y+1=0\) . Ако се праве \(p \) и \(n\) секу у тачки \(S(x_S,y_S)\) , тада је \(x_S\cdot y_S\) једнако:

    \(  9  \)
    \(   \frac{38}{9}   \)
    \(    \frac{39}{2}   \)  
    \(  7    \)
    \(   \frac{5}{2}   \)  

    Провери одговоре Не знам

  • 8.      

     Скуп свих решења неједначине \(\frac{x-1}{x-3}<\frac{x+8}{x+4}\) je

    \((-8,-4)\)
    \((-4,0)\)
     \((-\infty,-4)\cup(3,+\infty)\)    
    празан скуп    
    \((-4,3)\) 

    Провери одговоре Не знам

  • 9.      

    Збир квадрата свих решења једначине \(4^x=2^{\frac{x+1}{x}}\) је:

    \( \frac{3}{2} \) 
    \( \frac{1}{2} \) 
    \( \frac{5}{4} \)
    \( 25 \) 
    \( 5 \) 

    Провери одговоре Не знам

  • 10.      

    Ако се цена артикла најпре повећа за \(30\%\) а онда смањи за \(20\%\) коначна цена артикла у односу на почетну цену је:

    већа за\( 10\% \) 
    већа за\( 5\% \) 
    већа за\( 4\% \)
    мања за\( 2\% \) 
    већа за\( 2\% \) 

    Провери одговоре Не знам

  • 11.      

    Скуп решења неједначине \(\log_{\frac{1}{2}}(x^{2}-2x+1)>\log_{2}\frac{1}{4}\) је:

    \((-1,3)\)
     \((-1,0)\)
    \((1,3)\)  
    \((0,3)\)
    \((-1,1)\cup (1,3)\)

    Провери одговоре Не знам

  • 12.      

    Производ свих реалних решења једначине \(|x|+|x-1|=x+\frac{1}{2}\) једнак је:

     

    \(\frac{5}{6}\)  
    \(\frac{3}{2} \)   
    \(\frac{3}{4}\)  
    \(\frac{1}{2}\)  
    \(\frac{1}{8}\)        

    Провери одговоре Не знам

  • 13.      

     Реално решење једначине \(\sqrt{3x+2}-\sqrt{2x-2}=\sqrt{x} \) припада интервалу:

    \(\left (1,2 \right ]\)
    \(\left ( -\infty \right ]\)
    \(\left (2,3 \right ]\)
    \((3,+ \infty) \)
    \(\left (0,1 \right ]\)

    Провери одговоре Не знам

  • 14.      

    Израз \((a^{-1}+b^{-1})^{-1}:(b^{-1}-a^{-1})^{-1}, (a,b\neq0, a\neq b)\) идентички је једнак изразу:

    \( \frac{a+b}{a-b} \)
    \( a^2b^2 \) 
    \( \frac{a-b}{a-b} \) 
    \( 1 \) 
    \( \frac{a-b}{a+b} \) 

    Провери одговоре Не знам

  • 15.      

    Збир свих решења једначине \(\cos ^{2}\frac{\alpha }{2}+\cos ^{2}\alpha =\frac{1}{2}\) која припадају интервалу \((\pi ,2\pi )\) једнак је:

    \(\frac{17\pi }{6} \)
    \(\frac{11\pi }{2}\)
    \(\frac{11\pi }{4}\)
    \(3\pi \)
    \(\frac{13\pi }{3} \)

    Провери одговоре Не знам

  • 16.      

     Производ свих решења једначине \(2+4^{\sqrt{x^{2}-3}+x-3}=6\cdot 2^{\sqrt{x^{2}-3}+x-4} \) једнак је:

    \(\frac{19}{2} \)
    \(16 \)
    \(4 \)
    \(\frac{19}{4} \)
    \(8 \)

    Провери одговоре Не знам

  • 17.      

    Број свих целобројних решења неједначине \(\frac{4x^{2}-5x-39}{x^{2}-x-12}\leqslant 3\) је:

    \(2\)
    \(0 \)
    \(6\)
    \(3 \)
    \(1 \)

    Провери одговоре Не знам

  • 18.      

    Ако је \(log_72 = a\), тада је \(log_{\frac{1}{2}}28\):

     

    \(-\frac{4}{a}\)  
    \(-\frac{2a+1}{a}\)
    \(\frac{a+4}{a}\)
    \(-\frac{2a+1}{2a}\)
      \(-\frac{a+1}{2a}\)  

    Провери одговоре Не знам

  • 19.      

    У троуглу \(ABC\) је \(AB = 6 cm \), \(AC = 5 cm\) и \(AD = 4 cm\) , где је \(D\) подножје висине из темена \(A .\) Дужина полупречника описане кружнице троугла \(ABC \)\(cm\) ) једнака је:

    \(\frac{7}{2}cm \)
    \(\frac{9}{2}cm \)
    \(17 \)
    \(\frac{17}{4}cm \)
    \(\frac{15}{4}cm \)

    Провери одговоре Не знам

  • 20.      

    Ако је запремина правог ваљка \(V=6\pi\), а површина његовог омотача \(M=4\pi\), тада је однос полупречника основе \(r \) и висине \(H, \frac{r}{H}\) једнак: 

    \(4,5\)
     \(4\)  
    \(2,5\)
    \(2\)  
    \(3 \)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време