Пријемни испит
Број поена
Саобраћајни, Технички, Машински и Факултет организационих наука
Ако је лопта запремине \(V_1\) уписана у коцку запремине \(V_2\) , тада је \(\frac{V_1}{V_2}\) једнако:
Дате су тачке \(A(1,2), B(4,-7), C(6,-3).\) Ако је \(D(x_0, y_0)\) подножје висине спуштене из тачке \(C\) на страницу \(AB\), троугла \(ABC\) тада је \(x_0\cdot y_0\) једнако:
Ако је збир првих једанаест чланова геометријске прогресије \(S_{11}= 6141\), a количник \(q = 2\), први члан \(a_1\) је:
Ако је \((a,b]\cup(c,d]\) решење неједначине \(\frac{x^2+x-28}{x^2-4x-5}\geq2\), тада је \(a+b+c+d\) једнако:
Једначина праве која пролази кроз тачке \(A(-1,1)\) и \(B(1,4)\) гласи:
Десетоцифрених бројева чије су све цифре међусобно различите и који су дељиви са 5 има:
Први члан геометријске прогресије је \(a_1=3\) а шести члан је \(a_6=96\) . Збир првих десет чланова \(S_10\) је:
Ако је \(log_23=a \), тада је \(log_64\) једнако:
Ако је \(J=\frac{a+b}{a-b}\frac{a-b}{a+b}, a=\sqrt{3}, b=\sqrt{2} \) тада је \(J\) једнако:
Из тачке \(A(3,4) \) постављена је нормала \(n\) на праву \(p:4x-2y+1=0\) . Ако се праве \(p \) и \(n\) секу у тачки \(S(x_S,y_S)\) , тада је \(x_S\cdot y_S\) једнако:
Све вредности параметра \(p\) , за које за решења \(x_1\) и \(x_2\) једначине \(x^2-px+6=0\) важи релација \(x_1-x_2 = 1\) , припадају скупу:
Ако је \(a=225^{\frac{1}{2}-\log_{15}\sqrt[4]{9}}\) онда је \((a-4)^{a}\) једнако:
На колико начина се од 6 девојака и 7 младића може саставити екипа од 5 чланова, тако да у екипи буду 3 девојке и 2 младића?
Израз \((a^{-1}+b^{-1})^{-1}:(b^{-1}-a^{-1})^{-1}, (a,b\neq0, a\neq b)\) идентички је једнак изразу:
Реално решење једначине \(\sqrt{3x+2}-\sqrt{2x-2}=\sqrt{x} \) припада интервалу:
Ако 12 радника, радећи 5 дана, зараде 125000 динара, 15 радника за 6 дана заради:
Ако је \((x ,y), x, y\in R, 0 < x \leq y\), решење система једначина \(x^2+y^2=51, xy=12\) тада је \(y - x^3\) једнако:
Једна катета правоуглог троугла дужа је од друге катете за \(10cm\) , а краћа од хипотенузе за \(10cm \). Дужина хипотенузе припада интервалу :
Збир свих девет чланова аритметичке прогресије је за \(164\) већи од збира првих пет чланова те прогресије. Ако је девети члан за \(14\) мањи од двоструке вредности шестог члана, онда је производ прва два члана дате прогресије једнак:
У троуглу су странице \(b=3\sqrt{3}\) и \(c= 6\) , а најмањи угао \(\alpha=\frac{\pi}{6} \). Ако је трећа страница \(a < b\) , тада је \(a\) једнако:
Тренутно нема података за приказ графикона!
Попуните образац за слање ваших резултата вашем наставнику.