Задаци

  • 1.      

     Нека је \(f(x)=\frac{1-x}{1+x}\) за \(x\neq -1\) и \(g(x)=\frac{1}{x^2+1} .\) Тада је вредност једнака:

    \(-1 \)
    \(1 \)
    \(2 \)
    \(0 \)
    \(-2 \)

    Провери одговоре Не знам

  • 2.      

    Нека је \(S\) скуп свих целобројних вредности параметра \(m\) за које једначина \(x^2-(m-3)x+5+m=0\) има оба решења негативна. Број елемената скупа \(S\) је:

     

    \(7 \)  
    \(>7\)
    \(3\)    
    \(6\)  
    \(4\)

    Провери одговоре Не знам

  • 3.      

    Из тачке \(A(3,4) \) постављена је нормала \(n\) на праву \(p:4x-2y+1=0\) . Ако се праве \(p \) и \(n\) секу у тачки \(S(x_S,y_S)\) , тада је \(x_S\cdot y_S\) једнако:

    \(   \frac{5}{2}   \)  
    \(   \frac{38}{9}   \)
    \(    \frac{39}{2}   \)  
    \(  9  \)
    \(  7    \)

    Провери одговоре Не знам

  • 4.      

    Ако је првобитна цена књиге од \(500\) динара смањена најпре за \(10\%\), а затим за \(20\%\), нова цена књиге (у динарима) је:

     

     \(380\)
    \(360\)
    \(470\)      
    \(340\)  
    \(350\)

    Провери одговоре Не знам

  • 5.      

    На сајму књига првог дана је продато \(40\%\) књига мање него другог дана, а трећег за четвртину мање него првог и другог дана заједно. Ако је прва три дана укупно продато \(10500\) књига, онда је првог дана овог сајма продато:
     

    2100 књига
    2250 књига
    2550 књига
    2700 књига
    2400 књига

    Провери одговоре Не знам

  • 6.      

     Ако је \(a\neq -\frac{1}{2}\) и \(\left | a \right |\neq 2\) , онда је израз \(\left ( \frac{2a+1}{a+2}-\frac{4a+2}{4-a^{2}} \right ):\frac{2a+1}{a-2}+\left ( \frac{a+2}{2} \right )^{-1}\) идентички једнак изразу:

    \(\frac{1}{a+2} \)
    \(2 \)
    \(1 \)
    \(\frac{а}{a+2} \)
    \(а \)

    Провери одговоре Не знам

  • 7.      

    Ако се број страница конвексног \(n\)-тоугла повећа зa \(7\), број дијагонала му се повећа за \(119\). Број \(n\) износи:

     

     \(14\)  
    \(12\)      
    \(15\)
     \(13\)
    \(17\)

    Провери одговоре Не знам

  • 8.      

    Основе правог ваљка и праве купе су кругови полупречника \(12 cm\). Ако су запремине ваљка и купе једнаке, а висина купе за \(6 cm\) дужа од висине ваљка, онда је однос површина ваљка и купе једнак:

    \(3 : 2\)
    \(8 : 7\)
    \(10:9\)
    \(6 : 5\)
    \(4 : 3\)  

    Провери одговоре Не знам

  • 9.      

    Сва решења једначине \(3\cdot16^x + 2\cdot 81^x =5\cdot36^x\) припадају интервалу:

     

    \((-1,1)\) 
    \((5,7)\)
    \((3,5)\)    
    \((-3,-1)\)     
    \((1,3)\)  

    Провери одговоре Не знам

  • 10.      

    Дужина крака једнокраког троугла је \(5cm\), а висине која одговара основици \(3cm\). У тај троугао уписан је правоугаоник максималне површине тако да једна страница правоугаоника припада основици троугла. Обим тог правоугаоника је:

    7 cm
    10 cm
    9 cm
    8 cm
    11 cm

    Провери одговоре Не знам

  • 11.      

    Ако је \(z=1+i \), тада је \(z^4\) :

    \( -4 \)
    \( 1-i \) 
    \( -2+2i \) 
    \( 4i \) 
    \( 2i-1 \) 

    Провери одговоре Не знам

  • 12.      

    Десетоцифрених бројева чије су све цифре међусобно различите и који су дељиви са 5 има:

    \(2\cdot 10! \)
    \(17 \cdot 8! \)
    \(11\cdot 9! \)
    \(2\cdot 9!\)
    \(10\cdot 8! \)

    Провери одговоре Не знам

  • 13.      

    Скуп решења неједначине \(\log_{\frac{1}{2}}(x^{2}-2x+1)>\log_{2}\frac{1}{4}\) је:

    \((-1,1)\cup (1,3)\)
    \((0,3)\)
    \((1,3)\)  
    \((-1,3)\)
     \((-1,0)\)

    Провери одговоре Не знам

  • 14.      

    Ако је \(J=\frac{a+b}{a-b}\frac{a-b}{a+b}, a=\sqrt{3}, b=\sqrt{2} \) тада је \(J\) једнако:

     

    \(5\)  
    \(10\)
    \(1\)    
     \(1+2\sqrt{6}\)
    \(5-2\sqrt{6}\)

    Провери одговоре Не знам

  • 15.      

    Скуп свих решења неједначине \(2x+|x-1|<2\) у скупу реалних бројева је:

    \( (-\infty, -1) \) 
    празан скуп   
    \( (1,2) \) 
    \( (-\infty, 1) \)
    \( (1, +\infty) \) 

    Провери одговоре Не знам

  • 16.      

    Дате су функције \(f_1(x)=x, f_2(x)=\sqrt{x^2}\) и \(f_3(x)=(\sqrt{x})^2 .\) Тачан је исказ:

    \(  f_1 = f_2 = f_3  \)
    \(  f_1\neq f_2 \neq f_3 \neq f_1 \)
    \(   f_1 \neq f_2 = f_3   \)
    \( f_1 = f_2 \neq f_3    \) 
    \(   f_3 = f_1 \neq f_2   \)  

    Провери одговоре Не знам

  • 17.      

      Производ свих решења једначине \(4^{x-\frac{1}{x}}+16^{x-\frac{1}{x}}=72\) једнак је:

     

     \(1\)  
    \(4\)
     \(-6\)
    \(6      \)
    \(-1\)

    Провери одговоре Не знам

  • 18.      

    Скуп свих решења неједначине \(\frac{4x-3}{x-2}>3\) је:

    \( (-3,+\infty) \) 
    \( (-\infty,-3)\cup(2,+\infty) \)
    \( (-\infty,2)\cup(7,+\infty) \) 
    \( (2,+\infty) \) 
    \( (-\infty,-7)\cup(2,+\infty) \) 

    Провери одговоре Не знам

  • 19.      

    Ако 12 радника, радећи 5 дана, зараде 125000 динара, 15 радника за 6 дана заради:

     187500 дин.
    154500 дин. 
     163500 дин. 
    217500 дин.   
    237500 дин. 

    Провери одговоре Не знам

  • 20.      

    Ако је \(\sin\alpha=\frac{15}{17}, \frac{\pi}{2}<\alpha<\pi\), тада је \(\cos(\frac{\pi}{4}-\alpha)\) једнако:

     
     

    \(-\frac{15\sqrt{2}}{34}\)  
    \(\frac{7\sqrt{2}}{34}\) 
    \(-\frac{7\sqrt{2}}{34} \)  
    \(-\frac{23\sqrt{2}}{34}\)    
    \(\frac{23\sqrt{2}}{34}\)  

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време