Задаци

  • 1.      

    Дужина крака једнокраког троугла је \(5cm\), а висине која одговара основици \(3cm\). У тај троугао уписан је правоугаоник максималне површине тако да једна страница правоугаоника припада основици троугла. Обим тог правоугаоника је:

    8 cm
    7 cm
    11 cm
    9 cm
    10 cm

    Провери одговоре Не знам

  • 2.      

    Нека је \(S\) скуп свих целобројних вредности параметра \(m\) за које једначина \(x^2-(m-3)x+5+m=0\) има оба решења негативна. Број елемената скупа \(S\) је:

     

    \(3\)    
    \(>7\)
    \(6\)  
    \(4\)
    \(7 \)  

    Провери одговоре Не знам

  • 3.      


     Број решења једначине \(2\sin^2x=\sin2x\) на интервалу \([-\pi,\pi]\) једнак је

    4
    5
    3      
    6

    Провери одговоре Не знам

  • 4.      

    Производ свих реалних решења једначине \(|x|+|x-1|=x+\frac{1}{2}\) једнак је:

     

    \(\frac{1}{2}\)  
    \(\frac{1}{8}\)        
    \(\frac{3}{2} \)   
    \(\frac{5}{6}\)  
    \(\frac{3}{4}\)  

    Провери одговоре Не знам

  • 5.      

    Из тачке \(A(3,4) \) постављена је нормала \(n\) на праву \(p:4x-2y+1=0\) . Ако се праве \(p \) и \(n\) секу у тачки \(S(x_S,y_S)\) , тада је \(x_S\cdot y_S\) једнако:

    \(   \frac{5}{2}   \)  
    \(  7    \)
    \(  9  \)
    \(   \frac{38}{9}   \)
    \(    \frac{39}{2}   \)  

    Провери одговоре Не знам

  • 6.      

    Ако је \(z=1+i \), тада је \(z^4\) :

    \( 1-i \) 
    \( 2i-1 \) 
    \( -2+2i \) 
    \( 4i \) 
    \( -4 \)

    Провери одговоре Не знам

  • 7.      

     Ако је полином \(P(x)=x^{2014}+x^{2013}+ax+b\) дељив полиномом \(Q(x)=x^2-1\), тада је \(2a-5b\) једнако:


     

    \(-7\)
    \(-12\) 
    \(3\)
    \(-3\)  
    \(7\)

    Провери одговоре Не знам

  • 8.      

    Ако је првобитна цена књиге од \(500\) динара смањена најпре за \(10\%\), а затим за \(20\%\), нова цена књиге (у динарима) је:

     

    \(470\)      
    \(340\)  
     \(380\)
    \(350\)
    \(360\)

    Провери одговоре Не знам

  • 9.      

    Скуп свих вредности реалног параметра \(m\) за које су решења једначине \(mx^2 - 2mx + m - 2 = 0\) различитог знака је:

    \((0,2)\)
    \(\left [1,2  \right )\)
    \(\left (0,1  \right ]\)
    \((0,+\infty)\)
    \(\left [  1,+\infty\right )\) 

    Провери одговоре Не знам

  • 10.      

    Основе правог ваљка и праве купе су кругови полупречника \(12 cm\). Ако су запремине ваљка и купе једнаке, а висина купе за \(6 cm\) дужа од висине ваљка, онда је однос површина ваљка и купе једнак:

    \(10:9\)
    \(4 : 3\)  
    \(6 : 5\)
    \(8 : 7\)
    \(3 : 2\)

    Провери одговоре Не знам

  • 11.      

    Скуп свих решења неједначине \(3\cdot 81^{x}+2\cdot 16^{x}\leqslant 5\cdot 36^{x}\) је:

    \(\left [ -1,0 \right ]\)
    \(\left [ -\frac{2}{3},0 \right ]\)        
    \(\left [ -\frac{1}{2},0 \right ]\)
    \(\left [ -\frac{1}{3},0 \right ]\)  
    \(\left [ -\frac{4}{9},0 \right ]\)

    Провери одговоре Не знам

  • 12.      

    Тангенте постављене из тачке \(A(2,4)\) на кружницу \(x^2+y^2=2\) секу осу \(Oy\) у тачкама \(B\) и \(C\). Површина троугла \(ABC\) једнака је:

     

    \(6 \)       
    \(16\)
    \(10\)  
     \(8\)
    \(12\)

    Провери одговоре Не знам

  • 13.      

     Ако је \(a\neq -\frac{1}{2}\) и \(\left | a \right |\neq 2\) , онда је израз \(\left ( \frac{2a+1}{a+2}-\frac{4a+2}{4-a^{2}} \right ):\frac{2a+1}{a-2}+\left ( \frac{a+2}{2} \right )^{-1}\) идентички једнак изразу:

    \(а \)
    \(\frac{а}{a+2} \)
    \(1 \)
    \(\frac{1}{a+2} \)
    \(2 \)

    Провери одговоре Не знам

  • 14.      

    Ако за комплексан број \(z\) важи \(\left | z-3 \right |=\left | z-3+2i \right |\) и \(\left | z-2i \right |=\left | z+4-2i \right | ,\) где је \(i^{2}=-1 ,\) тада је:

    \(\left | z \right |=\sqrt{5} \)
    \(\left | z \right |=5 \)
    \(\left | z \right |=2 \)
    \(\left | z \right |=2\sqrt{5} \)
    \(\left | z \right |=3 \)

    Провери одговоре Не знам

  • 15.      

    Ако је \( a=\log_{\sqrt{2}}\sqrt[3]{64}-\sqrt[3]{3}^{\log_{\sqrt{3}}27}\), онда је вредност израза \((a+9)^{a+\frac{9}{2}}\) једнака:

     

     

    \(\frac{1}{4}\)
    \(\frac{1}{2}\)
    \(\frac{1}{16}\)          
    \(2\)
    \(4    \)  

    Провери одговоре Не знам

  • 16.      

    Решење једначине \(log_2(3x-7)=5\) je:

    \( 13 \)
    \( \frac{17}{3} \) 
    \( 4 \) 
    \( \frac{32}{3} \)
    \( 11 \) 

    Провери одговоре Не знам

  • 17.      

    Број реалних решења једначине \( \log \sqrt{x-2}+3\log \sqrt{x+2}=\frac{1}{2}+\log \sqrt{x^{2}-4}\)  је:

    \(3\)
    \(2\)
    \(0\)
    \(1\)
    \(4\)    

    Провери одговоре Не знам

  • 18.      

     Број решења једначине \( \sin(x-\frac{\pi}{3})=\frac{1}{2}\) у интервалу \([-2\pi, 2\pi]\) je:

     

    \(3\)
    \(5\)    
    \(4\)
    \(1\)
    \(2\)  

    Провери одговоре Не знам

  • 19.      

    Вредност израза \( \frac{3}{\sqrt{2}+1}+\frac{4}{\sqrt{2}+2}+\frac{7}{\sqrt{2}+3}\) je:

     

    [math]2[\math]
    [math]6-\sqrt{2}[\math]
    [math]4[\math]
    [math]3\sqrt{2}[\math]  
    [math]6\sqrt{2}[\math]    

    Провери одговоре Не знам

  • 20.      

    Вредност израза \(((\frac{7}{9}-\frac{7}{9}):1,25+(\frac{6}{7}-\frac{17}{28}):(0,358-0,108))\cdot1,6 - \frac{19}{25}\) je:

    \( 3 \) 
    \( 1 \)
    \( 0,5 \) 
    \( \frac{3}{28} \) 
    \( 2 \) 

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време