Задаци

  • 1.      

     Ако је \((a,b]\cup(c,d]\) решење неједначине \(\frac{x^2+x-28}{x^2-4x-5}\geq2\), тада је \(a+b+c+d\) једнако:

     

    \(12\)    
    \(14\)  
    \(15\)  
    \(16\)
    \(13\)

    Провери одговоре Не знам

  • 2.      

    Ако се цена артикла најпре повећа за \(30\%\) а онда смањи за \(20\%\) коначна цена артикла у односу на почетну цену је:

    већа за\( 2\% \) 
    већа за\( 10\% \) 
    већа за\( 4\% \)
    мања за\( 2\% \) 
    већа за\( 5\% \) 

    Провери одговоре Не знам

  • 3.      

     Ако је збир првих једанаест чланова геометријске прогресије \(S_{11}= 6141\), a количник \(q = 2\), први члан \(a_1\) је:

     

    \(3\)
    \(5\)  
    \(1\)
    \(4\)  
    \(7\)      

    Провери одговоре Не знам

  • 4.      

    Нека је \(f(x) = x^2 + 1\) и \(g(x) = 3x - 2\). Тада је вредност \(f(g^{-1} (4)) - g^{-1} (f(3))\) једнака:

     

     

    \(1\)
    \(-1\)  
    \(0\)        
    \(-3\)  
    \(3\)  

    Провери одговоре Не знам

  • 5.      

    Ако се број страница конвексног \(n\)-тоугла повећа зa \(7\), број дијагонала му се повећа за \(119\). Број \(n\) износи:

     

    \(15\)
    \(12\)      
    \(17\)
     \(13\)
     \(14\)  

    Провери одговоре Не знам

  • 6.      

    Број различитих решења једначине \(1 + \sin 2x - 2\sin x = \cos 2x\) на интервалу \([0,3\pi]\) је:

    \( 6 \)
    \(    2     \)  
    \(   4\)
    \(  3    \)
    \(     5    \)  

    Провери одговоре Не знам

  • 7.      

     Вредност израза \(\left [ 4^{-1}\left ( \frac{1}{25} \right )^{-\frac{1}{2}}+\left ( \sqrt{(-2)^{2}}-1,8 \right )^{-1} \right ]^{\frac{1}{2}}\cdot \left ( \sqrt[3]{(-1)^{3}}+2,2 \right )\) једнака је:

    \(\frac{8}{5}\)
    \(3\)
    \(5\)  
    \(\frac{3}{5}\)
    \(8\)    

    Провери одговоре Не знам

  • 8.      

    Ако за комплексан број \(z\) важи \(\frac{\left | z-1+i \right |}{\left | z-2+2i \right |}=1\) и \(\frac{\left | z \right |}{\left | z-1-i \right |}=1\), гдеје \( i^2 = -1\), тада је \(Im(\bar{z}\cdot i)\) једнак:

     

    \(2\)
    \(-1\)  
    \(-2\)
    \(0\)
    \(1\)       

    Провери одговоре Не знам

  • 9.      

    Збир свих решења једначине\( \sqrt{2x^2 - x + 3} = x +1\) je:

     

    \(4\)  
    \(-1\)    
    \(2\)  
    \(5\)
    \(3\)

    Провери одговоре Не знам

  • 10.      

    Ако је \(sin\alpha=\frac{5}{13}, \frac{\pi}{2}<\alpha<\pi, cos\beta=-\frac{3}{5}, \pi<\beta<\frac{3\pi}{2}\) , тада је \(cos(\alpha + \beta)\) једнако:

    \(     \frac{16}{65}   \)  
    \( \frac{56}{65}  \)
    \(   -\frac{56}{65}   \)
    \(    -\frac{16}{65}     \)  
    \(  \frac{36}{65}   \)

    Провери одговоре Не знам

  • 11.      

     Нека је \(f(x)=\frac{1-x}{1+x}\) за \(x\neq -1\) и \(g(x)=\frac{1}{x^2+1} .\) Тада је вредност једнака:

    \(0 \)
    \(-1 \)
    \(-2 \)
    \(1 \)
    \(2 \)

    Провери одговоре Не знам

  • 12.      

    Дате су функције \(f_1(x)=x, f_2(x)=\sqrt{x^2}\) и \(f_3(x)=(\sqrt{x})^2 .\) Тачан је исказ:

    \(  f_1 = f_2 = f_3  \)
    \(   f_3 = f_1 \neq f_2   \)  
    \(   f_1 \neq f_2 = f_3   \)
    \( f_1 = f_2 \neq f_3    \) 
    \(  f_1\neq f_2 \neq f_3 \neq f_1 \)

    Провери одговоре Не знам

  • 13.      

    Дужина крака једнокраког троугла је \(5cm\), а висине која одговара основици \(3cm\). У тај троугао уписан је правоугаоник максималне површине тако да једна страница правоугаоника припада основици троугла. Обим тог правоугаоника је:

    7 cm
    10 cm
    8 cm
    11 cm
    9 cm

    Провери одговоре Не знам

  • 14.      

    Скуп решења неједначине \(\log_{\frac{1}{2}}(x^{2}-2x+1)>\log_{2}\frac{1}{4}\) је:

    \((0,3)\)
     \((-1,0)\)
    \((-1,3)\)
    \((-1,1)\cup (1,3)\)
    \((1,3)\)  

    Провери одговоре Не знам

  • 15.      

    Комплексан број  \(\frac{2\cdot i^{2013}}{1+i}\) једнак је:

    \(  1+i \)
    \(    i  \)  
    \(   -1+i     \)
    \(   -1-i    \)  
    \(  1-i   \)

    Провери одговоре Не знам

  • 16.      

    У развоју \(\left ( \sqrt[4]{3}+\sqrt[3]{2} \right )^{2012}\) број чланова који су цели бројеви једнак је:

    \(168 \)
    \(671 \)
    \(504 \)
    \(503\)
    \(167 \)

    Провери одговоре Не знам

  • 17.      

    Ако 12 радника, радећи 5 дана, зараде 125000 динара, 15 радника за 6 дана заради:

     187500 дин.
    217500 дин.   
     163500 дин. 
    154500 дин. 
    237500 дин. 

    Провери одговоре Не знам

  • 18.      

    Десетоцифрених бројева чије су све цифре међусобно различите и који су дељиви са 5 има:

    \(10\cdot 8! \)
    \(11\cdot 9! \)
    \(17 \cdot 8! \)
    \(2\cdot 9!\)
    \(2\cdot 10! \)

    Провери одговоре Не знам

  • 19.      

    Различитих петоцифрених бројева, у чијем се запису користе две цифре 2 и по једна цифра 3, 4 и 5, има:

    \( 60 \)
    \(   40 \)
    \(     240    \)   
    \(  30    \)
    \(    120     \)

    Провери одговоре Не знам

  • 20.      

     Ако је полином \(P(x)=x^{2014}+x^{2013}+ax+b\) дељив полиномом \(Q(x)=x^2-1\), тада је \(2a-5b\) једнако:


     

    \(-7\)
    \(3\)
    \(-12\) 
    \(7\)
    \(-3\)  

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време