Задаци

  • 1.      

    Дате су тачке \(A(1,2), B(4,-7), C(6,-3).\) Ако је \(D(x_0, y_0)\) подножје висине спуштене из тачке \(C\) на страницу \(AB\), троугла \(ABC\) тада је \(x_0\cdot y_0\) једнако:

     

    \(-6 \)        
     \( 8\)
    \( 16\)
    \(-12\)
    \(4\)

    Провери одговоре Не знам

  • 2.      

    Збир свих решења једначине \(2^{x^2-3x}+(\frac{1}{2})^{x^2-3x-4}=17\) једнак је:

    \( 6 \)
    \(  3    \)
    \(    12     \)   
    \(     15    \)
    \(   9\)

    Провери одговоре Не знам

  • 3.      

    Разлика највећег и намањег решења једначине \(\sqrt{x-3}+\sqrt{8-x}=3\) једнак је:

    \(5 \)  
    \(2\)
    \(4\)  
    \(3\)
    \( 1 \)  

    Провери одговоре Не знам

  • 4.      

     Ако је \(a\neq -\frac{1}{2}\) и \(\left | a \right |\neq 2\) , онда је израз \(\left ( \frac{2a+1}{a+2}-\frac{4a+2}{4-a^{2}} \right ):\frac{2a+1}{a-2}+\left ( \frac{a+2}{2} \right )^{-1}\) идентички једнак изразу:

    \(\frac{1}{a+2} \)
    \(2 \)
    \(\frac{а}{a+2} \)
    \(а \)
    \(1 \)

    Провери одговоре Не знам

  • 5.      

     Угао између веће основице и крака једнакокраког трапеза једнак је \(60^{o}\) . Ако је дужина те основице једнака \(9 cm ,\) а крака \(4 cm ,\) површина трапеза (у \(cm^2\) ) једнака је:

    \(16\)
    \(14\sqrt{3} \)
    \( 24\sqrt{3} \)
    \(18 \)
    \(7\sqrt{3} \)

    Провери одговоре Не знам

  • 6.      

     У развоју \(\left ( \sqrt{3}+\sqrt[3]{2} \right )^{n}\), где је \(n\in \mathbb{N}\), биномни коефицијент трећег члана је 1005 пута већи од биномног коефицијента другог члана. Број чланова у том развоју који су рационални бројеви је:

    \(336\)
    \(334\)
    \(1005\) 
    \(335\)
    \(1006\)

    Провери одговоре Не знам

  • 7.      

    Број целобројних решења неједначине \(\frac{x^{2}-5x-5}{x^{2}+x-10}<-1\) је:

    \(2\)
    \(4\) 
    \(1\)
    \(3\)
    \(0\) 

    Провери одговоре Не знам

  • 8.      

    Израз \(\cos(\alpha + \beta)\cos(\alpha - \beta)- \sin(\alpha + \beta)\sin(\alpha - \beta)\) идентички је једнак изразу:

     

     \(1\)
    \(\cos2\alpha\) 
    \(\sin2\alpha\)     
     \(1+ \sin(2\alpha - 2\beta)\)
    \(\cos\alpha\)

    Провери одговоре Не знам

  • 9.      

     Ako за решења \(x_1\) и \(x_2\) једначине \(kx^2-(3k+2)x+7=0\) важи \( \frac{1}{x_1}\frac{1}{x_2}=8\), вредност параметра \(k\) припада интервалу:

    \((\frac{1}{2},5)\)
    \((10,20)\)
    \((-10,0)\)
    \((-20,-10)\)    
    \((5,10)\)    

    Провери одговоре Не знам

  • 10.      

    У развоју \(\left ( \sqrt[4]{3}+\sqrt[3]{2} \right )^{2012}\) број чланова који су цели бројеви једнак је:

    \(167 \)
    \(504 \)
    \(671 \)
    \(168 \)
    \(503\)

    Провери одговоре Не знам

  • 11.      

    Скуп свих решења неједначине \(3\cdot 81^{x}+2\cdot 16^{x}\leqslant 5\cdot 36^{x}\) је:

    \(\left [ -\frac{4}{9},0 \right ]\)
    \(\left [ -1,0 \right ]\)
    \(\left [ -\frac{1}{3},0 \right ]\)  
    \(\left [ -\frac{2}{3},0 \right ]\)        
    \(\left [ -\frac{1}{2},0 \right ]\)

    Провери одговоре Не знам

  • 12.      

    Из тачке \(A(3,4) \) постављена је нормала \(n\) на праву \(p:4x-2y+1=0\) . Ако се праве \(p \) и \(n\) секу у тачки \(S(x_S,y_S)\) , тада је \(x_S\cdot y_S\) једнако:

    \(   \frac{5}{2}   \)  
    \(  7    \)
    \(    \frac{39}{2}   \)  
    \(  9  \)
    \(   \frac{38}{9}   \)

    Провери одговоре Не знам

  • 13.      

     У биномном развоју  \((x^3+\frac{1}{x})^{12}\), члан који не садржи \(x\) је:

     

    седми
    једанаести
     пети
     десети
    девети

    Провери одговоре Не знам

  • 14.      

     Ако је збир првих једанаест чланова геометријске прогресије \(S_{11}= 6141\), a количник \(q = 2\), први члан \(a_1\) је:

     

    \(5\)  
    \(4\)  
    \(3\)
    \(7\)      
    \(1\)

    Провери одговоре Не знам

  • 15.      

     Вредност израза \(\left [ 6^2+9\cdot \left ( 5,25-10\cdot (0,5)^3 \right ) +\left ( \frac{5}{2}: \frac{(25)^{\frac{1}{2}}}{6} \right )^2 \right ]^{\frac{1}{4}}\) једнака је:

    \(4 \)
    \(5 \)
    \(2 \)
    \(3 \)
    \(6 \)

    Провери одговоре Не знам

  • 16.      

    Скуп свих решења неједначине \(\frac{|x-2|}{x^2-3x+2}\geq 2\) у скупу реалних бројева je:

     

    \((-\infty, \frac{1}{2}]\cup (1,+\infty)\)
    \([\frac{1}{2},1]\)
    \((-\infty, \frac{1}{2}]\)          
    \((1,+\infty)\)  
    \((1,3)\) 

    Провери одговоре Не знам

  • 17.      

    Нека је \(P(x) = x^5 + ax^3 + bx\) и \(Q(x) = x^2 + 2x + 1\), где су \(a\) и \(b\) реални бројеви. Ако је полином  \(P\) дељив полиномом \(Q\), тада је вредност израза \(a^2 + b^2\) једнака:

     

    \(13\)
    \(8\)
    \(2\)
    \(5\)
    \(10\)

    Провери одговоре Не знам

  • 18.      

    Комплексан број  \(\frac{2\cdot i^{2013}}{1+i}\) једнак је:

    \(    i  \)  
    \(   -1-i    \)  
    \(  1-i   \)
    \(  1+i \)
    \(   -1+i     \)

    Провери одговоре Не знам

  • 19.      

    Ако је лопта запремине \(V_1\) уписана у коцку запремине \(V_2\) , тада је \(\frac{V_1}{V_2}\) једнако:

    \(   \frac{\pi}{4}    \)  
    \(  \frac{\pi}{6}  \)
    \(    \frac{2\pi}{9}    \) 
    \(   \frac{\pi}{3} \)
    \(  \frac{\pi}{8}    \)

    Провери одговоре Не знам

  • 20.      

    Тангенте постављене из тачке \(A(2,4)\) на кружницу \(x^2+y^2=2\) секу осу \(Oy\) у тачкама \(B\) и \(C\). Површина троугла \(ABC\) једнака је:

     

     \(8\)
    \(12\)
    \(6 \)       
    \(10\)  
    \(16\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време