Задаци

  • 1.      

    Нека је \(\DeclareMathOperator\tg{tg} \DeclareMathOperator\ctg{ctg} f_1(x)=1, f_2(x)= \tg{\frac{x}{2}}\ctg{\frac{x}{2}}\) и \(\DeclareMathOperator\tg{tg} \DeclareMathOperator\ctg{ctg} f_3(x)= \frac{|\sin x|}{\sqrt{1-\cos^2x}}\). Тачно је тврђење:

    \(f_1 \neq f_2 = f_3\)
    \(f_1=f_2 \neq f_3\)
    \(f_1=f_3 \neq f_2\)
    све функције су једнаке међу собом
    међу датим функцијама нема једнаких

    Провери одговоре Не знам

  • 2.      

    Вредност израза \( \frac{1-tg^215^{\circ}}{1+tg^215^{\circ}}\) је:

    \(\sqrt{3}\)
    \(\frac{\sqrt{3}}{2}\)  
    \(1\)
    \(-\frac{2}{\sqrt{3}}\)
    \(\frac{1}{2}\)

    Провери одговоре Не знам

  • 3.      

    Једначина \(\sqrt{1-x}=-x\) :

    нема решења                
    има тачно једно решење и оно је негативно
    има више од два решење
    има тачно једно решење и оно је позитивно
    има тачно два решења

    Провери одговоре Не знам

  • 4.      

    Најмања вредност функције \(f(x)=4x+\frac{9\pi ^{2}}{x}+\sin x, x>0\) је:
     

    \(12\pi -1 \)
    \(\frac{5\pi}{2}\)
    \(5\pi +2 \)
    \(\frac{\pi^2-1}{2} \)
    \(3\pi +1 \)

    Провери одговоре Не знам

  • 5.      

    Укупан број парова \((x,y)\) целих бројева таквих да важи \(|x^2-2x|-y<\frac{1}{2}\) и \(y+|x-1|<2\) је:

    \(0\)
    \(4\)
    \(3\)
    \(2\)
    \(1\)

    Провери одговоре Не знам

  • 6.      

    Вредност израза \(\left ( \frac{\left ( -0,4 \right )^{3}}{\left ( -0,8 \right )^{3}}- \frac{\left ( -0,8 \right )^{3}}{\left ( -0,4 \right )^{3}} \right ):\left ( \frac{3}{4}-3 \right )\) једнака је:

    \(\frac{4}{9} \) 
    \(\frac{63}{8} \)
    \(\frac{7}{9} \) 
    \(\frac{9}{2} \) 
    \(\frac{7}{2} \) 

    Провери одговоре Не знам

  • 7.      

    Ако права \(y = 2x + p\) у равни \(Oxy ( p \in R )\) додирује параболу \(y = x^2 − x\), онда \(p\) припада интервалу:

     

    \([−4, −2)\)   
    \([−10, −8)\)  
    \([−8, −4)\)
    \([−2, 2)\)  
    \([2, 4]\)

    Провери одговоре Не знам

  • 8.      

    Ако је \(a\in \mathbb{R}\) и \(\left | a+\frac{1}{a} \right |=3\) тада је \(\left | a-\frac{1}{a} \right |\) једнако:

    \(\sqrt{2} \)
    \(\sqrt{3} \)
    \(0 \)
    \(\sqrt{5} \)
    \(\sqrt{7} \)

    Провери одговоре Не знам

  • 9.      

    Бројеви \(a, b, c\) су узастопни чланови растућег аритметичког низа, а бројеви \(a,b,c+1\) су узастопни бројеви геометријског низа. Ако је \(a+b+c=18\), онда је \(a^2+b^2+c^2\) једнако:

    140
    133
    116
    126
    109

    Провери одговоре Не знам

  • 10.      

    Правилна четворострана призма пресечена је са равни која садржи основну ивицу призме. Ако је површина пресека равни призме два пута већи од површине базе, тада је угао између те равни и базе призме једнак:

    \(60^o \)
    \(15^o \)
    \(75^o \)
    \(30^o \)
    \(45^o \)

    Провери одговоре Не знам

  • 11.      

    За коју вредност реалног параметра \(m\) израз \(x_1^3  + x_2^3\), где су \(x_1\) и  \(x_2\) решења квадратне једначине \(x^2 − x + m^2 + 2m − 3 = 0\), узима максималну вредност?
     

    \(2\)
    \(1\)
    \(2\) 
    \(−1\) 
    \(0\)  

    Провери одговоре Не знам

  • 12.      

    Коефицијент уз \(x^{24}\) у развијеном облику степена бинома \((x^2-2x)^{13}\) је:

    -78
    -312
    312
    156
    78

    Провери одговоре Не знам

  • 13.      

    Ако је \(k \in R\), \(i^{2}=-1\), тада је могудо комплексног броја \(\left(\frac{1+i}{1-i}\right)^{2015}+\frac{-1+5ki}{3i}-1\) најмањи за \(k\) једнако:

    \(3\)
    \(0\)
    \(-\frac{1}{2}\)
    \(\frac{1}{3}\)
    \(\frac{3}{5}\)

    Провери одговоре Не знам

  • 14.      

    Вредност израза \(8\sin ^2 80^o-2\sqrt{3}\sin 40^o-2\cos 40^o\) једнака је:

    \(1 \)
    \(2\)
    \(2\sqrt{3}\)
    \(4\sqrt{3} \)
    \(4 \)

    Провери одговоре Не знам

  • 15.      

    У оштроуглом троуглу странице су \(a = 1\) и \(b=2\), а површина \(P=\frac{12}{13}\). Дужина треће странице \(c\) тог троугла једнака је:

    \(\frac{4\sqrt{5}}{\sqrt{13}}\)
    \(\frac{2\sqrt{5}}{\sqrt{13}}\)
    \(\frac{3\sqrt{5}}{\sqrt{13}}\)
    \(\frac{\sqrt{85}}{\sqrt{13}}\)
    \(\frac{5\sqrt{5}}{\sqrt{13}}\)

    Провери одговоре Не знам

  • 16.      

    Ако је \(N\) број шестоцифрених бројева који у свом запису садрже цифру 1 бар на једном месту, тада \(N\) припада интервалу:

    \([3 \cdot 10^5, 4 \cdot 10^5)\)
    \([5 \cdot 10^5, 6 \cdot 10^5)\)
    \([10^5, 2 \cdot 10^5)\)
    \([4 \cdot 10^5, 5 \cdot 10^5)\)
    \([2 \cdot 10^5, 3 \cdot 10^5)\)

    Провери одговоре Не знам

  • 17.      

    У правој купи угао између изводнице и висине је \(60^{\circ}\) а изводница је за \(2cm\) дужа од висине. Колика је запремина те купе?

     

    \(\frac{\pi}{3} cm^3\)
     \(\frac{\pi}{2} cm^3\)  
    \(\pi^2 cm^3\)    
    \(8\pi cm^3\)
    \(\pi cm^3\)

    Провери одговоре Не знам

  • 18.      

    Реалан део комплексног броја \( \frac{1}{2-\sqrt{5}+i\sqrt{3}}\) је:

    \(\frac{(\sqrt{5}-3)\sqrt{3}}{16}\)
    \(-2-\sqrt{5}\)
    \(\frac{1-\sqrt{5}}{16}\)
    \(\frac{1}{3-\sqrt{5}}\)
    \(\frac{1-\sqrt{5}}{4}\)

    Провери одговоре Не знам

  • 19.      

    Ако се зна да \(\frac{14}{9}\) биномног коефицијента трећег члана, биномни коефицијент четвртог члана и биномни коефицијент петог члана у развоју бинома \(\left( \sqrt[3]{x}+\frac{1}{\sqrt{x}} \right)^n\)\((n \in N, x>0)\), чине геометријску прогресију, тада је биномни коефицијент уз \(\sqrt{x}\) једнак:

    \(48\)
    \(1\)
    \(84\)
    \(21\)
    \(5\)

    Провери одговоре Не знам

  • 20.      

    Растојање координатног почетка \(O\) правоуглог координатног система \(xOy\) од праве задате једначином \(y=3x+5\) је:

    \(\frac{\sqrt{5}}{3}\)
    \(\frac{3}{2}\)
    \(\frac{\sqrt{10}}{2}\)
    \(\frac{\sqrt{5}}{2}\)
    \(\frac{\sqrt{10}}{3}\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време