Задаци

  • 1.      

    За коју вредност реалног параметра \(m\) израз \(x_1^3  + x_2^3\), где су \(x_1\) и  \(x_2\) решења квадратне једначине \(x^2 − x + m^2 + 2m − 3 = 0\), узима максималну вредност?
     

    \(1\)
    \(−1\) 
    \(2\)
    \(2\) 
    \(0\)  

    Провери одговоре Не знам

  • 2.      

    Коефицијент уз \(x^{24}\) у развијеном облику степена бинома \((x^2 − 2x)^{13}\) је:

    \(-312\)            
    \(-78\)  
    \(78\)
    \(312\)
    \(156\)  

    Провери одговоре Не знам

  • 3.      

    Најкраће растојање између правих \(\sqrt{2}x+y=1\) и \(2x+\sqrt{2}y=3\sqrt{2}\) једнако је:

    \(2\)
    \(0\)
    \(\frac{\sqrt{6}}{6}\)
    \(\frac{2}{3}\sqrt{3}\)
    \(\sqrt{2}\)

    Провери одговоре Не знам

  • 4.      

    Једно од реалних решења једначине \(\log_{\cos{x}}\sin{x}=4\log_{\sin{x}}\cos{x}\) припада интервалу:

    \(\left(0, \frac{\pi}{6} \right]\)
    \(\left(\frac{\pi}{6}, \frac{\pi}{4} \right]\)
    \(\left[\frac{5\pi}{6}, \pi \right)\)
    \(\left(\frac{\pi}{4}, \frac{\pi}{3} \right]\)
    \(\left(\frac{\pi}{3}, \frac{\pi}{2} \right)\)

    Провери одговоре Не знам

  • 5.      

    Ако је \(a=0,1^{0,1}\), \(b=0,2^{0,2}\) и \(c=0,3^{0,3}\), тада је

    \(a<b<c\)
    \(b<a<c\)
    \(c<b<a\)
    \(b<c<a\)
    \(c<a<b\)

    Провери одговоре Не знам

  • 6.      

    У правој купи угао између изводнице и висине је \(60^{\circ}\) а изводница је за \(2cm\) дужа од висине. Колика је запремина те купе?

     

    \(\frac{\pi}{3} cm^3\)
    \(8\pi cm^3\)
     \(\frac{\pi}{2} cm^3\)  
    \(\pi^2 cm^3\)    
    \(\pi cm^3\)

    Провери одговоре Не знам

  • 7.      

    Средиште горње основе коцке и средишта ивица њене доње основе су темена пирамиде. Ако је ивица коцке \(2cm\), површина омотача пирамиде је:

    \(3\sqrt{2}{cm}^2\)
    \(6{cm}^2\)
    \(9{cm}^2\)
    \(4\sqrt{2}{cm}^2\)
    \(4\sqrt{3}{cm}^2\)

    Провери одговоре Не знам

  • 8.      

    Растојање координатног почетка \(O\) правоуглог координатног система \(xOy\) од праве задате једначином \(y=3x+5\) је:

    \(\frac{\sqrt{10}}{2}\)
    \(\frac{3}{2}\)
    \(\frac{\sqrt{10}}{3}\)
    \(\frac{\sqrt{5}}{3}\)
    \(\frac{\sqrt{5}}{2}\)

    Провери одговоре Не знам

  • 9.      

    Једначина круга чији је центар тачка пресека правих \(x-2y+4=0\) и \(3x+y-9=0\), а који додирује праву \(3x+4y+2 \) гласи:

    \(x^{2}-4x+y^{2}-6y-1=0 \)
    \(x^{2}-4x+y^{2}-6y+1=0 \)
    \(x^{2}-4x+y^{2}-6y-2=0 \)
    \(x^{2}-4x+y^{2}-6y=0 \)
    \(x^{2}-4x+y^{2}-6y-3=0 \)

    Провери одговоре Не знам

  • 10.      

    Дата је аритметичка прогресија \(a_{1},a_{2},a_{3},\dots\) чија је разлика \(d=1\), а збир првих \(98\) чланова \(a_{1}+a_{2}+ \cdots+a_{98}=137\). Тада је збир \(a_{2}+a_{4}+a_{6}+ \cdots+a_{98}\) једнак:

    \(93\)
    \(103\)
    \(141\)
    \(88\)
    \(127\)

    Провери одговоре Не знам

  • 11.      

    Која од наведених релација постоји између решења \(x_1\) и \(x_2\) квадратне једначине \((1+m)x^{2}-(6+5m)x+5+6m=0, (m\in \mathbb{R}, m\neq 1) ?\)

    \(3x_1x_2+x_1+x_2-1=0 \)
    \(-x_1x_2+x_1+x_2-4=0 \)
    \(x_1x_2+x_1+x_2-11=0 \)
    \(4 x_1x_2+x_1+x_2=2 \)
    \(-x_1x_2+x_1+x_2+2=0 \)

    Провери одговоре Не знам

  • 12.      

    Израз \(a \sqrt{a} \cdot \sqrt[4]{a^3}\), \(a \geq 0\), идентички је једнак изразу:

    \(a^6\)
    \(\sqrt[4]{a^7}\)
    \(\sqrt[4]{a^{11}}\)
    \(a^2\)
    \(\sqrt[4]{a^9}\)

    Провери одговоре Не знам

  • 13.      

    Број реалиних решења једначине \(f(x)+f(f(x))=x\), где је \(f(x)=|x|+a\)\(a>0\) једнак је:

    \(1\)
    \(3\)
    \(4\)
    \(2\)
    \(0\)

    Провери одговоре Не знам

  • 14.      

    Збир првих 2012 чланова аритметичке прогресије \(\frac{2011}{2012}, \frac{2010}{2012}, \frac{2009}{2012}, \cdots \) износи:

    Ни један од понуђених одговора
    \(\frac{2013}{2} \)
    \(\frac{2011}{4} \)
    \(\frac{2013}{4} \)
    \(\frac{2011}{2} \)

    Провери одговоре Не знам

  • 15.      

    Ако је \(k \in R\), \(i^{2}=-1\), тада је могудо комплексног броја \(\left(\frac{1+i}{1-i}\right)^{2015}+\frac{-1+5ki}{3i}-1\) најмањи за \(k\) једнако:

    \(\frac{1}{3}\)
    \(\frac{3}{5}\)
    \(3\)
    \(0\)
    \(-\frac{1}{2}\)

    Провери одговоре Не знам

  • 16.      

    Правилна четворострана призма пресечена је са равни која садржи основну ивицу призме. Ако је површина пресека равни призме два пута већи од површине базе, тада је угао између те равни и базе призме једнак:

    \(60^o \)
    \(30^o \)
    \(45^o \)
    \(15^o \)
    \(75^o \)

    Провери одговоре Не знам

  • 17.      

    Коефициент уз \(x^{27}y^{2}\) у развоју бинома \(\left ( x^{3}+\sqrt{y} \right )^{13}\) једнак је:

    \(715 \)
    \(12 \)
    \(1516 \)
    \(1312 \)
    \(78 \)

    Провери одговоре Не знам

  • 18.      

    Тангента криве \(y=e^{-x} (x>-1)\), сече координатне осе у тачкама \(A\) и \(B\). Ако је \(O\) координатни почетак, максимална површина троугла \(AOB\) износи:

    \(\frac{2}{e}\)
    \(\frac{1}{e}\)
    \(e\)
    \(\frac{3}{e}\)
    \(2e\)

    Провери одговоре Не знам

  • 19.      

    Који од датих интервала садржи сва решења једначине \(\frac{x-1}{\sqrt{x}+1}= 4+\frac{\sqrt{x}-1}{2}\)?

    \((−1, 1)\)
    \((10, 24]\)
    \((24, 92]\)
    \([6, 10]\)
    \([1, 6)\)  

    Провери одговоре Не знам

  • 20.      

    Једначина \(\sqrt{1-x}=-x\):

    има више од два решења
    има тачно једно решење и оно је негативно
    има тачно два решења
    има тачно једно решење и оно је позитивно
    нема решења

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време