Задаци

  • 1.      

    Скуп решења неједначине \(\log_2(\log_4 x) + \log_4(\log_2 x) < 2\) је:

    \((\frac{1}{2}, 16)\)
    \((0, 16)\)
    \((0, 8)\)  
    \((\frac{1}{16}, 16)\)
    \((1, 16)\)

    Провери одговоре Не знам

  • 2.      

    Четири младића и четири девојке иду у биоскоп. Имају карте за места у истом реду који има тачно 8 седишта. На колико начина се могу распоредити ако је познато да две од девојака не желе да седа ни на првом ни на последњем месту. 
     

     

    \(\frac{8!}{4!}\)
    \(30\cdot 6!\)
    \(2\cdot 6!\)  
    \(\frac{(8!)^2}{2}\)
    \(15\cdot 6!\)

    Провери одговоре Не знам

  • 3.      

    Највећа могућа запремина праве купе чија изводница има дужину \(s\) је: 

    \(\frac{\pi s^3\sqrt{3}}{9}\)  
    \(\frac{4\pi s^3\sqrt{3}}{27}\)  
    \(\frac{2\pi s^3\sqrt{3}}{27}\)
    \(\frac{\pi s^3\sqrt{3}}{27}\)  
     \(\frac{2\pi s^3\sqrt{2}}{27}\)

    Провери одговоре Не знам

  • 4.      

    Знајући да је \(\cos\left({x-\frac{3\pi}{2}}\right)=-\frac{4}{5}\) и \(\frac{\pi}{2}<x<\pi\), тада је вредност израза \(\sin\frac{x}{2}\cos{\frac{5x}{2}}\) једнака:

    \(\frac{4}{125}\)
    \(\frac{82}{125}\)
    \(-\frac{38}{125}\)
    \(-1\)
    \(1\)

    Провери одговоре Не знам

  • 5.      

    Укупан број реалних решења једначине \(\sqrt{3\cdot 2^{\log_{10}2x}+1}+\sqrt{2\cdot 2^{\log_{10}2x}+9}=\sqrt{13\cdot 2^{\log_{10}2x}-4}\) је:

    Ниједан од понуђених одговора
    \(1 \)
    \(2 \)
    \(0 \)
    \(3 \)

    Провери одговоре Не знам

  • 6.      

    Дата је аритметичка прогресија \(a_{1},a_{2},a_{3},\dots\) чија је разлика \(d=1\), а збир првих \(98\) чланова \(a_{1}+a_{2}+ \cdots+a_{98}=137\). Тада је збир \(a_{2}+a_{4}+a_{6}+ \cdots+a_{98}\) једнак:

    \(141\)
    \(93\)
    \(127\)
    \(88\)
    \(103\)

    Провери одговоре Не знам

  • 7.      

    Реалан део комплексног броја \( \frac{1}{2-\sqrt{5}+i\sqrt{3}}\) је:

    \(\frac{1-\sqrt{5}}{16}\)
    \(-2-\sqrt{5}\)
    \(\frac{1-\sqrt{5}}{4}\)
    \(\frac{(\sqrt{5}-3)\sqrt{3}}{16}\)
    \(\frac{1}{3-\sqrt{5}}\)

    Провери одговоре Не знам

  • 8.      

    Прав ваљак и права купа имају заједничку основу. Врх купе је центар друге основе ваљка. Ако је однос висине ваљка и изводнице купе \(4:5\), тада је однос површина ваљка и купе једнак:

    \(3:2\)
    \(7:5\)
    \(8:5\)
    \(4:3\)
    \(7:4\)

    Провери одговоре Не знам

  • 9.      

    Правилна четворострана призма пресечена је са равни која садржи основну ивицу призме. Ако је површина пресека равни призме два пута већи од површине базе, тада је угао између те равни и базе призме једнак:

    \(75^o \)
    \(45^o \)
    \(60^o \)
    \(30^o \)
    \(15^o \)

    Провери одговоре Не знам

  • 10.      

    Једначина \(\sqrt{1-x}=-x\):

    има више од два решења
    нема решења
    има тачно два решења
    има тачно једно решење и оно је негативно
    има тачно једно решење и оно је позитивно

    Провери одговоре Не знам

  • 11.      

    Број \({\left( 1+i \sqrt{3}\right)}^n\), где је \(i^2=-1\), је реалан ако и само ако за неки цео број \(k\) важи:

    \(n=3k+1\)
    \(n=2k\)
    \(n=3k+2\)
    \(n=3k\)
    \(n=6k\)

    Провери одговоре Не знам

  • 12.      

    Вредност израза \(8\sin ^2 80^o-2\sqrt{3}\sin 40^o-2\cos 40^o\) једнака је:

    \(2\sqrt{3}\)
    \(4\sqrt{3} \)
    \(2\)
    \(1 \)
    \(4 \)

    Провери одговоре Не знам

  • 13.      

    За коју вредност реалног параметра \(m\) израз \(x_1^3  + x_2^3\), где су \(x_1\) и  \(x_2\) решења квадратне једначине \(x^2 − x + m^2 + 2m − 3 = 0\), узима максималну вредност?
     

    \(2\)
    \(0\)  
    \(−1\) 
    \(1\)
    \(2\) 

    Провери одговоре Не знам

  • 14.      

    Нека је \(\DeclareMathOperator\tg{tg} \DeclareMathOperator\ctg{ctg} f_1(x)=1, f_2(x)= \tg{\frac{x}{2}}\ctg{\frac{x}{2}}\) и \(\DeclareMathOperator\tg{tg} \DeclareMathOperator\ctg{ctg} f_3(x)= \frac{|\sin x|}{\sqrt{1-\cos^2x}}\). Тачно је тврђење:

    \(f_1=f_2 \neq f_3\)
    \(f_1 \neq f_2 = f_3\)
    \(f_1=f_3 \neq f_2\)
    све функције су једнаке међу собом
    међу датим функцијама нема једнаких

    Провери одговоре Не знам

  • 15.      

    Вредност израза \( \frac{1-tg^215^{\circ}}{1+tg^215^{\circ}}\) је:

    \(\sqrt{3}\)
    \(\frac{\sqrt{3}}{2}\)  
    \(1\)
    \(\frac{1}{2}\)
    \(-\frac{2}{\sqrt{3}}\)

    Провери одговоре Не знам

  • 16.      

    У једнакокраком \(ABC\) троуглу је \(AB=BC=b\), \(AC=a\) и \(\sphericalangle ABC=20^{\circ}\). тада је израз \(\frac{a^2}{b^2}+\frac{b}{a}\) једнак:

    \(\frac{5}{2}\)
    \(3\)
    \(1\)
    \(\frac{3}{2}\)
    \(2\)

    Провери одговоре Не знам

  • 17.      

    Ако је \(f(x − 1)=\frac{2x-1}{x+2}\) онда је \(f(f(x))\)  једнако:

     

    \(1\)
     \(\frac{2x+1}{x+3}\)
    \(\frac{5x+3}{5x+1}\)  
    \(\frac{2x-1}{x+2}\)
    \(\frac{x+1}{x+2}\)  

    Провери одговоре Не знам

  • 18.      

    Ако су \(x_{1}\) и \(x_{2}\) решења квадратне једначине \(x^2+x+1=0\), тада су \(y_{1}=ax_{1}+x_{2}\) и \(y_{2}=x_{1}+ax_{2}\), \((a \in R)\), решења квадратне једначине:

    \(y^{2}+(a+1)y+a^2-a+1=0\)
    ниједан од понуђених одговора
    \(y^{2}+(a^2+1)y+1=0\)
    \(y^{2}+(a^2+1)y+a^2-a+1=0\)
    \(y^{2}+(a+1)y-a^2+a+1=0\)

    Провери одговоре Не знам

  • 19.      

    Ако је \(k \in Z\) и \(0,0010101 \cdot 10^{k}>1001\), која је намања могућа вредност за \(k\)?

    \(-6\)
    \(0\)
    \(-5\)
    \(5\)
    \(6\)

    Провери одговоре Не знам

  • 20.      

    Укупан број парова \((x,y)\) целих бројева таквих да важи \(|x^2-2x|-y<\frac{1}{2}\) и \(y+|x-1|<2\) је:

    \(2\)
    \(3\)
    \(0\)
    \(1\)
    \(4\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време