Задаци

  • 1.      

    Ако је \(k \in Z\) и \(0,0010101 \cdot 10^{k}>1001\), која је намања могућа вредност за \(k\)?

    \(-5\)
    \(-6\)
    \(6\)
    \(5\)
    \(0\)

    Провери одговоре Не знам

  • 2.      

    Скуп свих решења неједначине \(\frac{\left | 1-x \right |}{1-\left | x \right |}<\frac{1+\left | x \right |}{\left | 1+x \right |}\) је облика (за неке реалне бројеве \(a\) и \(b\) такве да је \(0 < a < b < + \infty ):\)

    \((-\infty, -a) \cup (a, +\infty ) \)
    \((-\infty, -a) \)
    \((a, +\infty ) \)
    \((-\infty, -a) \cup (-a, a ) \cup (a, +\infty ) \)
    \((-b, -a) \cup (a, b) \)

    Провери одговоре Не знам

  • 3.      

    Скуп решења неједначине \(\log_2(\log_4 x) + \log_4(\log_2 x) < 2\) је:

    \((\frac{1}{16}, 16)\)
    \((1, 16)\)
    \((0, 8)\)  
    \((0, 16)\)
    \((\frac{1}{2}, 16)\)

    Провери одговоре Не знам

  • 4.      

    Број реалиних решења једначине \(f(x)+f(f(x))=x\), где је \(f(x)=|x|+a\)\(a>0\) једнак је:

    \(2\)
    \(3\)
    \(1\)
    \(0\)
    \(4\)

    Провери одговоре Не знам

  • 5.      

    Опадајућа аритметичка прогресија \((a_n)\) је таква да важи \(a_1^2  + a_2^2  + a_3^2  = 56\)  и \(\frac{a_{10}}{a_2}=5\). Тада је \(a_{2014}\) једнако

    \(4028\)      
    \(−4028\)
    \(−4030\)
    таква прогресија не постоји 
    \(4030\)

    Провери одговоре Не знам

  • 6.      

    Тангента криве \(y=e^{-x} (x>-1)\), сече координатне осе у тачкама \(A\) и \(B\). Ако је \(O\) координатни почетак, максимална површина троугла \(AOB\) износи:

    \(e\)
    \(2e\)
    \(\frac{1}{e}\)
    \(\frac{3}{e}\)
    \(\frac{2}{e}\)

    Провери одговоре Не знам

  • 7.      

    Ако се зна да \(\frac{14}{9}\) биномног коефицијента трећег члана, биномни коефицијент четвртог члана и биномни коефицијент петог члана у развоју бинома \(\left( \sqrt[3]{x}+\frac{1}{\sqrt{x}} \right)^n\)\((n \in N, x>0)\), чине геометријску прогресију, тада је биномни коефицијент уз \(\sqrt{x}\) једнак:

    \(84\)
    \(21\)
    \(1\)
    \(5\)
    \(48\)

    Провери одговоре Не знам

  • 8.      

    За коју вредност реалног параметра \(m\) израз \(x_1^3  + x_2^3\), где су \(x_1\) и  \(x_2\) решења квадратне једначине \(x^2 − x + m^2 + 2m − 3 = 0\), узима максималну вредност?
     

    \(2\) 
    \(2\)
    \(0\)  
    \(1\)
    \(−1\) 

    Провери одговоре Не знам

  • 9.      

    Вредност израза \( \frac{1-tg^215^{\circ}}{1+tg^215^{\circ}}\) је:

    \(-\frac{2}{\sqrt{3}}\)
    \(\sqrt{3}\)
    \(\frac{1}{2}\)
    \(\frac{\sqrt{3}}{2}\)  
    \(1\)

    Провери одговоре Не знам

  • 10.      

    Ако је:

     

    \(\begin{eqnarray} x-2y+z&=&7\\ 2x+3y-z&=&-2\\ -x+2y+2z&=&2 \end{eqnarray}\)

     

    онда је \(x^2+y^2+z^2\) једнако:

    8
    10
    16
    12
    14

    Провери одговоре Не знам

  • 11.      

    Најкраће растојање између правих \(\sqrt{2}x+y=1\) и \(2x+\sqrt{2}y=3\sqrt{2}\) једнако је:

    \(\sqrt{2}\)
    \(0\)
    \(\frac{2}{3}\sqrt{3}\)
    \(2\)
    \(\frac{\sqrt{6}}{6}\)

    Провери одговоре Не знам

  • 12.      

    Који од датих интервала садржи сва решења једначине \(\frac{x-1}{\sqrt{x}+1}= 4+\frac{\sqrt{x}-1}{2}\)?

    \([6, 10]\)
    \((24, 92]\)
    \((−1, 1)\)
    \((10, 24]\)
    \([1, 6)\)  

    Провери одговоре Не знам

  • 13.      

    Вредност израза \(\left( 1-sin\frac{\pi}{8} \right)\left( 1+sin\frac{\pi}{8} \right)\) је:

    \(\frac{1}{4}\)
    \(\frac{\sqrt{2}}{8}\)
    \(\frac{2-\sqrt{2}}{4}\)
    \(\frac{2+\sqrt{2}}{4}\)
    \(\frac{\sqrt{2}}{4}\)

    Провери одговоре Не знам

  • 14.      

    Ако су \(\alpha\) и \(\beta\) решења једначине \(x^2-2x+5=0\), онда је \(\frac{​\alpha^2+\alpha \beta+ \beta^2}{\alpha^3+\beta^3}\) једнако:

    \(\frac{1}{11}\)
    \(-\frac{1}{2}\)
    \(\frac{1}{22}\)
    \(\frac{1}{2}\)
    \(-\frac{1}{22}\)

    Провери одговоре Не знам

  • 15.      

    Ако је \(A=\frac{1}{6}\left((log_{2}{3})^3- (\log_{2}{6})^3-(\log_{2}{12})^3+(log_{2}{24})^3 \right)\), тада је вредност израза \(2^A\) једнака:

    \(36\)
    \(64\)
    \(72\)
    \(1\)
    \(144\)

    Провери одговоре Не знам

  • 16.      

    У оштроуглом троуглу странице су \(a = 1\) и \(b=2\), а површина \(P=\frac{12}{13}\). Дужина треће странице \(c\) тог троугла једнака је:

    \(\frac{3\sqrt{5}}{\sqrt{13}}\)
    \(\frac{5\sqrt{5}}{\sqrt{13}}\)
    \(\frac{4\sqrt{5}}{\sqrt{13}}\)
    \(\frac{2\sqrt{5}}{\sqrt{13}}\)
    \(\frac{\sqrt{85}}{\sqrt{13}}\)

    Провери одговоре Не знам

  • 17.      

    Коефициент уз \(x^{27}y^{2}\) у развоју бинома \(\left ( x^{3}+\sqrt{y} \right )^{13}\) једнак је:

    \(715 \)
    \(1312 \)
    \(78 \)
    \(12 \)
    \(1516 \)

    Провери одговоре Не знам

  • 18.      

    Бројеви \(a, b, c\) су узастопни чланови растућег аритметичког низа, а бројеви \(a,b,c+1\) су узастопни бројеви геометријског низа. Ако је \(a+b+c=18\), онда је \(a^2+b^2+c^2\) једнако:

    133
    116
    140
    109
    126

    Провери одговоре Не знам

  • 19.      

    Странице троугла су \(21\) и \(9\sqrt{2} ,\) а њима захваћени угао \(45^o .\) Збир полупречника уписаног и описаног круга тог троугла је:

    \(6(\sqrt{2}+1) \)
    \(6(\sqrt{3}+2) \)
    \(6(\sqrt{2}-1) \)
    \(3(-\sqrt{3}+2) \)
    \(6(\sqrt{3}-\sqrt{2}) \)

    Провери одговоре Не знам

  • 20.      

    Реалан део комплексног броја \( \frac{1}{2-\sqrt{5}+i\sqrt{3}}\) је:

    \(\frac{1-\sqrt{5}}{4}\)
    \(\frac{(\sqrt{5}-3)\sqrt{3}}{16}\)
    \(\frac{1}{3-\sqrt{5}}\)
    \(-2-\sqrt{5}\)
    \(\frac{1-\sqrt{5}}{16}\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време