Задаци

  • 1.      

    Коефицијент уз \(x^{24}\) у развијеном облику степена бинома \((x^2 − 2x)^{13}\) је:

    \(-78\)  
    \(78\)
    \(-312\)            
    \(312\)
    \(156\)  

    Провери одговоре Не знам

  • 2.      

    У правој купи угао између изводнице и висине је \(60^{\circ}\) а изводница је за \(2cm\) дужа од висине. Колика је запремина те купе?

     

    \(8\pi cm^3\)
    \(\pi cm^3\)
    \(\pi^2 cm^3\)    
     \(\frac{\pi}{2} cm^3\)  
    \(\frac{\pi}{3} cm^3\)

    Провери одговоре Не знам

  • 3.      

    Ако је \(i^{2}=-1\) и \(\varepsilon\) комплексан број који задовољава услов \(\varepsilon ^{2} + \varepsilon +1=0 ,\) тада је решење једначине \(\frac{x-1}{x+1}=\varepsilon \frac{1+i}{1-i}\) по \(x\) једнако:

    \(−2\varepsilon −1+2i \)
    \(−2\varepsilon −1−2i \)
    \(2\varepsilon +1−2i \)
    \(2\varepsilon −1−2i \)
    \(−2\varepsilon +1−2i \)

    Провери одговоре Не знам

  • 4.      

    Ако су \(A\) и \(B\) тачке на кругу \(x^2  + y^2  + 4x + 4y + 5  =  0\) најдаље и најближе тачки \(C(1, 2)\) онда је \(AC + BC\) једнако: 
     

     

    \(5\sqrt{3}\)
    \(5\)  
    \(5-\sqrt{3}\)
    \(5\sqrt{3}+5\)  
    \(10\)  

    Провери одговоре Не знам

  • 5.      

    Једначина круга чији је центар тачка пресека правих \(x-2y+4=0\) и \(3x+y-9=0\), а који додирује праву \(3x+4y+2 \) гласи:

    \(x^{2}-4x+y^{2}-6y-1=0 \)
    \(x^{2}-4x+y^{2}-6y=0 \)
    \(x^{2}-4x+y^{2}-6y+1=0 \)
    \(x^{2}-4x+y^{2}-6y-2=0 \)
    \(x^{2}-4x+y^{2}-6y-3=0 \)

    Провери одговоре Не знам

  • 6.      

    Ако је \(k \in Z\) и \(0,0010101 \cdot 10^{k}>1001\), која је намања могућа вредност за \(k\)?

    \(0\)
    \(6\)
    \(-5\)
    \(-6\)
    \(5\)

    Провери одговоре Не знам

  • 7.      

    Број \({\left( 1+i \sqrt{3}\right)}^n\), где је \(i^2=-1\), је реалан ако и само ако за неки цео број \(k\) важи:

    \(n=3k+2\)
    \(n=3k+1\)
    \(n=3k\)
    \(n=6k\)
    \(n=2k\)

    Провери одговоре Не знам

  • 8.      

    Ако је \(a=\log_{2}3\) и \(b=\log_{5}2 \), тада је \(\log_{24}50\) једнако:

    \(\frac{1+b}{b(a+3)} \)
    \(\frac{-2+b}{b(a-4)} \)
    \(\frac{1+b}{b(a+4)} \)
    \(\frac{b-2}{(b+1)(a+3)} \)
    \(\frac{2+b}{b(a+3)} \)

    Провери одговоре Не знам

  • 9.      

    Знајући да је \(\cos\left({x-\frac{3\pi}{2}}\right)=-\frac{4}{5}\) и \(\frac{\pi}{2}<x<\pi\), тада је вредност израза \(\sin\frac{x}{2}\cos{\frac{5x}{2}}\) једнака:

    \(\frac{82}{125}\)
    \(\frac{4}{125}\)
    \(-1\)
    \(-\frac{38}{125}\)
    \(1\)

    Провери одговоре Не знам

  • 10.      

    Ако су \(x_{1}\) и \(x_{2}\) решења квадратне једначине \(x^2+x+1=0\), тада су \(y_{1}=ax_{1}+x_{2}\) и \(y_{2}=x_{1}+ax_{2}\), \((a \in R)\), решења квадратне једначине:

    \(y^{2}+(a+1)y+a^2-a+1=0\)
    \(y^{2}+(a^2+1)y+1=0\)
    \(y^{2}+(a+1)y-a^2+a+1=0\)
    ниједан од понуђених одговора
    \(y^{2}+(a^2+1)y+a^2-a+1=0\)

    Провери одговоре Не знам

  • 11.      

    Укупан број реалних решења једначине \(\sqrt{3\cdot 2^{\log_{10}2x}+1}+\sqrt{2\cdot 2^{\log_{10}2x}+9}=\sqrt{13\cdot 2^{\log_{10}2x}-4}\) је:

    Ниједан од понуђених одговора
    \(1 \)
    \(2 \)
    \(3 \)
    \(0 \)

    Провери одговоре Не знам

  • 12.      

    Ако је \(a=0,1^{0,1}\), \(b=0,2^{0,2}\) и \(c=0,3^{0,3}\), тада је

    \(b<c<a\)
    \(a<b<c\)
    \(c<a<b\)
    \(b<a<c\)
    \(c<b<a\)

    Провери одговоре Не знам

  • 13.      

    Ако је \(N\) број шестоцифрених бројева који у свом запису садрже цифру 1 бар на једном месту, тада \(N\) припада интервалу:

    \([4 \cdot 10^5, 5 \cdot 10^5)\)
    \([5 \cdot 10^5, 6 \cdot 10^5)\)
    \([2 \cdot 10^5, 3 \cdot 10^5)\)
    \([3 \cdot 10^5, 4 \cdot 10^5)\)
    \([10^5, 2 \cdot 10^5)\)

    Провери одговоре Не знам

  • 14.      

    Број реалиних решења једначине \(f(x)+f(f(x))=x\), где је \(f(x)=|x|+a\)\(a>0\) једнак је:

    \(2\)
    \(1\)
    \(0\)
    \(4\)
    \(3\)

    Провери одговоре Не знам

  • 15.      

    Вредност израза \( \frac{1-tg^215^{\circ}}{1+tg^215^{\circ}}\) је:

    \(\frac{1}{2}\)
    \(\sqrt{3}\)
    \(1\)
    \(-\frac{2}{\sqrt{3}}\)
    \(\frac{\sqrt{3}}{2}\)  

    Провери одговоре Не знам

  • 16.      

    Унутрашљи углови конвексног петоугла односе се као 3 : 4 : 5 : 7 : 8. Разлика највећег и најмањег од тих углова је:

    40°
    60°
    80°
    100°
    120°

    Провери одговоре Не знам

  • 17.      

    Ако је \(f(x − 1)=\frac{2x-1}{x+2}\) онда је \(f(f(x))\)  једнако:

     

     \(\frac{2x+1}{x+3}\)
    \(\frac{x+1}{x+2}\)  
    \(1\)
    \(\frac{2x-1}{x+2}\)
    \(\frac{5x+3}{5x+1}\)  

    Провери одговоре Не знам

  • 18.      

    Најкраће растојање између правих \(\sqrt{2}x+y=1\) и \(2x+\sqrt{2}y=3\sqrt{2}\) једнако је:

    \(2\)
    \(0\)
    \(\sqrt{2}\)
    \(\frac{\sqrt{6}}{6}\)
    \(\frac{2}{3}\sqrt{3}\)

    Провери одговоре Не знам

  • 19.      

    Растојање координатног почетка \(O\) правоуглог координатног система \(xOy\) од праве задате једначином \(y=3x+5\) је:

    \(\frac{3}{2}\)
    \(\frac{\sqrt{5}}{3}\)
    \(\frac{\sqrt{5}}{2}\)
    \(\frac{\sqrt{10}}{3}\)
    \(\frac{\sqrt{10}}{2}\)

    Провери одговоре Не знам

  • 20.      

    Ако је:

     

    \(\begin{eqnarray} x-2y+z&=&7\\ 2x+3y-z&=&-2\\ -x+2y+2z&=&2 \end{eqnarray}\)

     

    онда је \(x^2+y^2+z^2\) једнако:

    14
    10
    16
    12
    8

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време