Задаци

  • 1.      

    Највећа могућа запремина праве купе чија изводница има дужину \(s\) је: 

    \(\frac{4\pi s^3\sqrt{3}}{27}\)  
    \(\frac{\pi s^3\sqrt{3}}{27}\)  
    \(\frac{\pi s^3\sqrt{3}}{9}\)  
     \(\frac{2\pi s^3\sqrt{2}}{27}\)
    \(\frac{2\pi s^3\sqrt{3}}{27}\)

    Провери одговоре Не знам

  • 2.      

    Ако је \(a\in \mathbb{R}\) и \(\left | a+\frac{1}{a} \right |=3\) тада је \(\left | a-\frac{1}{a} \right |\) једнако:

    \(\sqrt{5} \)
    \(0 \)
    \(\sqrt{7} \)
    \(\sqrt{2} \)
    \(\sqrt{3} \)

    Провери одговоре Не знам

  • 3.      

    Aко је \(f(x)=x^3-3x\) и \(g(x)=\sin \frac{\pi }{12}x\) тада је \(f(g(2))\) једнако:

    \(0 \)
    \(-\frac{11}{8} \)
    \(\frac{11}{2} \)
    \(\frac{11}{8}\)
    \(-\frac{11}{2} \)

    Провери одговоре Не знам

  • 4.      

    Једна катета правоуглог троугла је \(8cm\), а хипотенуза је \(17cm\). Полупречник уписаног круга тог троугла је:

    2cm
    4cm
    3cm
    2,5cm
    3,5cm

    Провери одговоре Не знам

  • 5.      

    У правој купи угао између изводнице и висине је \(60^{\circ}\) а изводница је за \(2cm\) дужа од висине. Колика је запремина те купе?

     

    \(\pi^2 cm^3\)    
     \(\frac{\pi}{2} cm^3\)  
    \(8\pi cm^3\)
    \(\frac{\pi}{3} cm^3\)
    \(\pi cm^3\)

    Провери одговоре Не знам

  • 6.      

    Правилна четворострана призма пресечена је са равни која садржи основну ивицу призме. Ако је површина пресека равни призме два пута већи од површине базе, тада је угао између те равни и базе призме једнак:

    \(60^o \)
    \(15^o \)
    \(45^o \)
    \(75^o \)
    \(30^o \)

    Провери одговоре Не знам

  • 7.      

    Растојање координатног почетка \(O\) правоуглог координатног система \(xOy\) од праве задате једначином \(y=3x+5\) је:

    \(\frac{\sqrt{10}}{3}\)
    \(\frac{\sqrt{10}}{2}\)
    \(\frac{\sqrt{5}}{3}\)
    \(\frac{\sqrt{5}}{2}\)
    \(\frac{3}{2}\)

    Провери одговоре Не знам

  • 8.      

    Вредност израза \(8\sin ^2 80^o-2\sqrt{3}\sin 40^o-2\cos 40^o\) једнака је:

    \(1 \)
    \(2\)
    \(4\sqrt{3} \)
    \(4 \)
    \(2\sqrt{3}\)

    Провери одговоре Не знам

  • 9.      

    Ако је \(f(\frac{x+3}{x+1})=3x+2\)  за \(x \in R \setminus\{ -1\}\), онда је  \(f(5)\) једнако:

    \( 17 \)
    \( 5 \)
    \( \frac{1}{2}\)
    \( \frac{5}{2} \)
    \( -\frac{1}{2} \)

    Провери одговоре Не знам

  • 10.      

    Ако се зна да је полином \(x^{3}+ax^{2}+bx-4, (a,b\in \mathbb{R})\) дељив полиномом \(x^{2}-1 \), тада збир \(a^{2}+ b ^{2}\) износи:

    \(17 \)
    \(14 \)
    \(1 \)
    \(3 \)
    \(5 \)

    Провери одговоре Не знам

  • 11.      

    Која од наведених релација постоји између решења \(x_1\) и \(x_2\) квадратне једначине \((1+m)x^{2}-(6+5m)x+5+6m=0, (m\in \mathbb{R}, m\neq 1) ?\)

    \(3x_1x_2+x_1+x_2-1=0 \)
    \(-x_1x_2+x_1+x_2+2=0 \)
    \(4 x_1x_2+x_1+x_2=2 \)
    \(-x_1x_2+x_1+x_2-4=0 \)
    \(x_1x_2+x_1+x_2-11=0 \)

    Провери одговоре Не знам

  • 12.      

    Ако се зна да \(\frac{14}{9}\) биномног коефицијента трећег члана, биномни коефицијент четвртог члана и биномни коефицијент петог члана у развоју бинома \(\left( \sqrt[3]{x}+\frac{1}{\sqrt{x}} \right)^n\)\((n \in N, x>0)\), чине геометријску прогресију, тада је биномни коефицијент уз \(\sqrt{x}\) једнак:

    \(5\)
    \(1\)
    \(21\)
    \(48\)
    \(84\)

    Провери одговоре Не знам

  • 13.      

    Четири младића и четири девојке иду у биоскоп. Имају карте за места у истом реду који има тачно 8 седишта. На колико начина се могу распоредити ако је познато да две од девојака не желе да седа ни на првом ни на последњем месту. 
     

     

    \(\frac{(8!)^2}{2}\)
    \(15\cdot 6!\)
    \(\frac{8!}{4!}\)
    \(30\cdot 6!\)
    \(2\cdot 6!\)  

    Провери одговоре Не знам

  • 14.      

    Израз \(a \sqrt{a} \cdot \sqrt[4]{a^3}\), \(a \geq 0\), идентички је једнак изразу:

    \(\sqrt[4]{a^7}\)
    \(a^2\)
    \(\sqrt[4]{a^{11}}\)
    \(a^6\)
    \(\sqrt[4]{a^9}\)

    Провери одговоре Не знам

  • 15.      

    Једно од реалних решења једначине \(\log_{\cos{x}}\sin{x}=4\log_{\sin{x}}\cos{x}\) припада интервалу:

    \(\left(0, \frac{\pi}{6} \right]\)
    \(\left[\frac{5\pi}{6}, \pi \right)\)
    \(\left(\frac{\pi}{3}, \frac{\pi}{2} \right)\)
    \(\left(\frac{\pi}{6}, \frac{\pi}{4} \right]\)
    \(\left(\frac{\pi}{4}, \frac{\pi}{3} \right]\)

    Провери одговоре Не знам

  • 16.      

    Коефициент уз \(x^{27}y^{2}\) у развоју бинома \(\left ( x^{3}+\sqrt{y} \right )^{13}\) једнак је:

    \(78 \)
    \(1516 \)
    \(715 \)
    \(1312 \)
    \(12 \)

    Провери одговоре Не знам

  • 17.      

    Ако је \(a=\log_{2}3\) и \(b=\log_{5}2 \), тада је \(\log_{24}50\) једнако:

    \(\frac{-2+b}{b(a-4)} \)
    \(\frac{2+b}{b(a+3)} \)
    \(\frac{1+b}{b(a+3)} \)
    \(\frac{b-2}{(b+1)(a+3)} \)
    \(\frac{1+b}{b(a+4)} \)

    Провери одговоре Не знам

  • 18.      

    Ако је \(A=\frac{1}{6}\left((log_{2}{3})^3- (\log_{2}{6})^3-(\log_{2}{12})^3+(log_{2}{24})^3 \right)\), тада је вредност израза \(2^A\) једнака:

    \(72\)
    \(144\)
    \(64\)
    \(36\)
    \(1\)

    Провери одговоре Не знам

  • 19.      

    Збир свих целих бројева који задовољавају једначину \(\frac{x}{x+2} \leq \frac{1}{1-x}\)  је:

    бесконачан
    \(0\)
    \(−1\)
    \(−2\)    
     \(1\)  

    Провери одговоре Не знам

  • 20.      

    Највећа вредност функције \(f(x) = |2x + 1| + |x − 3| − |5x − 4|\) ,  \(x \in R\)  је:

    \(2\)      
    \(−3\)    
    \(4,8\)
    \(2,6\) 
    \(−4\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време