Задаци

  • 1.      

    Унутрашљи углови конвексног петоугла односе се као 3 : 4 : 5 : 7 : 8. Разлика највећег и најмањег од тих углова је:

    100°
    120°
    80°
    40°
    60°

    Провери одговоре Не знам

  • 2.      

    Ако је \(i^{2}=-1\) и \(\varepsilon\) комплексан број који задовољава услов \(\varepsilon ^{2} + \varepsilon +1=0 ,\) тада је решење једначине \(\frac{x-1}{x+1}=\varepsilon \frac{1+i}{1-i}\) по \(x\) једнако:

    \(−2\varepsilon −1+2i \)
    \(−2\varepsilon +1−2i \)
    \(2\varepsilon +1−2i \)
    \(2\varepsilon −1−2i \)
    \(−2\varepsilon −1−2i \)

    Провери одговоре Не знам

  • 3.      

    Највећа вредност функције \(f(x) = |2x + 1| + |x − 3| − |5x − 4|\) ,  \(x \in R\)  је:

    \(4,8\)
    \(2\)      
    \(−3\)    
    \(2,6\) 
    \(−4\)

    Провери одговоре Не знам

  • 4.      

    Једначина круга чији је центар тачка пресека правих \(x-2y+4=0\) и \(3x+y-9=0\), а који додирује праву \(3x+4y+2 \) гласи:

    \(x^{2}-4x+y^{2}-6y-3=0 \)
    \(x^{2}-4x+y^{2}-6y+1=0 \)
    \(x^{2}-4x+y^{2}-6y-2=0 \)
    \(x^{2}-4x+y^{2}-6y=0 \)
    \(x^{2}-4x+y^{2}-6y-1=0 \)

    Провери одговоре Не знам

  • 5.      

    Знајући да је \(\cos\left({x-\frac{3\pi}{2}}\right)=-\frac{4}{5}\) и \(\frac{\pi}{2}<x<\pi\), тада је вредност израза \(\sin\frac{x}{2}\cos{\frac{5x}{2}}\) једнака:

    \(-\frac{38}{125}\)
    \(\frac{4}{125}\)
    \(1\)
    \(-1\)
    \(\frac{82}{125}\)

    Провери одговоре Не знам

  • 6.      

    Једна катета правоуглог троугла је \(8cm\), а хипотенуза је \(17cm\). Полупречник уписаног круга тог троугла је:

    3,5cm
    2cm
    3cm
    4cm
    2,5cm

    Провери одговоре Не знам

  • 7.      

    Сва реална решења једначине \(\frac{x+\sqrt{3}}{\sqrt{3}+\sqrt{x+\sqrt{3}}}+\frac{x-\sqrt{3}}{\sqrt{3}-\sqrt{x-\sqrt{3}}}=\sqrt{x}\) налазе се у скупу:

    \([\sqrt{3},2\sqrt{3})\)
    \([6,8)\)
    \([3\sqrt{3},6)\)
    \(\emptyset\)
    \((2\sqrt{3},3\sqrt{3})\)

    Провери одговоре Не знам

  • 8.      

    Прав ваљак и права купа имају заједничку основу. Врх купе је центар друге основе ваљка. Ако је однос висине ваљка и изводнице купе \(4:5\), тада је однос површина ваљка и купе једнак:

    \(7:5\)
    \(8:5\)
    \(3:2\)
    \(7:4\)
    \(4:3\)

    Провери одговоре Не знам

  • 9.      

    Опадајућа аритметичка прогресија \((a_n)\) је таква да важи \(a_1^2  + a_2^2  + a_3^2  = 56\)  и \(\frac{a_{10}}{a_2}=5\). Тада је \(a_{2014}\) једнако

    \(−4030\)
    таква прогресија не постоји 
    \(−4028\)
    \(4028\)      
    \(4030\)

    Провери одговоре Не знам

  • 10.      

    Ако се зна да је полином \(x^{3}+ax^{2}+bx-4, (a,b\in \mathbb{R})\) дељив полиномом \(x^{2}-1 \), тада збир \(a^{2}+ b ^{2}\) износи:

    \(17 \)
    \(3 \)
    \(1 \)
    \(5 \)
    \(14 \)

    Провери одговоре Не знам

  • 11.      

    У правој купи угао између изводнице и висине је \(60^{\circ}\) а изводница је за \(2cm\) дужа од висине. Колика је запремина те купе?

     

     \(\frac{\pi}{2} cm^3\)  
    \(8\pi cm^3\)
    \(\pi cm^3\)
    \(\pi^2 cm^3\)    
    \(\frac{\pi}{3} cm^3\)

    Провери одговоре Не знам

  • 12.      

    Скуп решења неједначине \(\log_2(\log_4 x) + \log_4(\log_2 x) < 2\) је:

    \((1, 16)\)
    \((\frac{1}{2}, 16)\)
    \((0, 8)\)  
    \((0, 16)\)
    \((\frac{1}{16}, 16)\)

    Провери одговоре Не знам

  • 13.      

    Ако су \(\alpha\) и \(\beta\) решења једначине \(x^2-2x+5=0\), онда је \(\frac{​\alpha^2+\alpha \beta+ \beta^2}{\alpha^3+\beta^3}\) једнако:

    \(\frac{1}{2}\)
    \(\frac{1}{11}\)
    \(-\frac{1}{22}\)
    \(-\frac{1}{2}\)
    \(\frac{1}{22}\)

    Провери одговоре Не знам

  • 14.      

    Једно од реалних решења једначине \(\log_{\cos{x}}\sin{x}=4\log_{\sin{x}}\cos{x}\) припада интервалу:

    \(\left(\frac{\pi}{3}, \frac{\pi}{2} \right)\)
    \(\left[\frac{5\pi}{6}, \pi \right)\)
    \(\left(0, \frac{\pi}{6} \right]\)
    \(\left(\frac{\pi}{6}, \frac{\pi}{4} \right]\)
    \(\left(\frac{\pi}{4}, \frac{\pi}{3} \right]\)

    Провери одговоре Не знам

  • 15.      

    Број реалиних решења једначине \(f(x)+f(f(x))=x\), где је \(f(x)=|x|+a\)\(a>0\) једнак је:

    \(3\)
    \(1\)
    \(0\)
    \(4\)
    \(2\)

    Провери одговоре Не знам

  • 16.      

    Ако је \(N\) број шестоцифрених бројева који у свом запису садрже цифру 1 бар на једном месту, тада \(N\) припада интервалу:

    \([5 \cdot 10^5, 6 \cdot 10^5)\)
    \([10^5, 2 \cdot 10^5)\)
    \([4 \cdot 10^5, 5 \cdot 10^5)\)
    \([3 \cdot 10^5, 4 \cdot 10^5)\)
    \([2 \cdot 10^5, 3 \cdot 10^5)\)

    Провери одговоре Не знам

  • 17.      

    Тангента криве \(y=e^{-x} (x>-1)\), сече координатне осе у тачкама \(A\) и \(B\). Ако је \(O\) координатни почетак, максимална површина троугла \(AOB\) износи:

    \(2e\)
    \(\frac{2}{e}\)
    \(\frac{3}{e}\)
    \(\frac{1}{e}\)
    \(e\)

    Провери одговоре Не знам

  • 18.      

    Бројеви \(a, b, c\) су узастопни чланови растућег аритметичког низа, а бројеви \(a,b,c+1\) су узастопни бројеви геометријског низа. Ако је \(a+b+c=18\), онда је \(a^2+b^2+c^2\) једнако:

    140
    126
    116
    133
    109

    Провери одговоре Не знам

  • 19.      

    Око кружнице полупречника \(2cm\) описан је једнакокраки трапез површине \(20cm^2\). Дужина његовог крака је:

     

    \(10cm\)      
     такав трапез не постоји
    \(20cm\)
    \(5cm\)  
    \(6cm\)

    Провери одговоре Не знам

  • 20.      

    Ако за дијагонале ромба важи једнакост \(d_1=(2-\sqrt{3})d_2\), тада је оштар угао ромба једнак:

    \(45^{\circ}\)
    \(22,5^{\circ}\)
    \(15^{\circ}\)
    \(30^{\circ}\)
    \(60^{\circ}\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време