Пријемни испит
Број поена
Електротехнички,Природно Математички и Фармацеутски факултет
Средиште горње основе коцке и средишта ивица њене доње основе су темена пирамиде. Ако је ивица коцке \(2cm\), површина омотача пирамиде је:
У једнакокраком \(ABC\) троуглу је \(AB=BC=b\), \(AC=a\) и \(\sphericalangle ABC=20^{\circ}\). тада је израз \(\frac{a^2}{b^2}+\frac{b}{a}\) једнак:
Која од наведених релација постоји између решења \(x_1\) и \(x_2\) квадратне једначине \((1+m)x^{2}-(6+5m)x+5+6m=0, (m\in \mathbb{R}, m\neq 1) ?\)
Вредност израза \(8\sin ^2 80^o-2\sqrt{3}\sin 40^o-2\cos 40^o\) једнака је:
Ако је \(A=\frac{1}{6}\left((log_{2}{3})^3- (\log_{2}{6})^3-(\log_{2}{12})^3+(log_{2}{24})^3 \right)\), тада је вредност израза \(2^A\) једнака:
Знајући да је \(\cos\left({x-\frac{3\pi}{2}}\right)=-\frac{4}{5}\) и \(\frac{\pi}{2}<x<\pi\), тада је вредност израза \(\sin\frac{x}{2}\cos{\frac{5x}{2}}\) једнака:
Четири младића и четири девојке иду у биоскоп. Имају карте за места у истом реду који има тачно 8 седишта. На колико начина се могу распоредити ако је познато да две од девојака не желе да седа ни на првом ни на последњем месту.
Максимална запремина ваљка уписаног у лопту полупречника \(R\) је:
Једначина круга чији је центар тачка пресека правих \(x-2y+4=0\) и \(3x+y-9=0\), а који додирује праву \(3x+4y+2 \) гласи:
Дата је аритметичка прогресија \(a_{1},a_{2},a_{3},\dots\) чија је разлика \(d=1\), а збир првих \(98\) чланова \(a_{1}+a_{2}+ \cdots+a_{98}=137\). Тада је збир \(a_{2}+a_{4}+a_{6}+ \cdots+a_{98}\) једнак:
За коју вредност реалног параметра \(m\) израз \(x_1^3 + x_2^3\), где су \(x_1\) и \(x_2\) решења квадратне једначине \(x^2 − x + m^2 + 2m − 3 = 0\), узима максималну вредност?
Ако је \(f \left( \frac{x+3}{x+1} \right)=3x+2\) за \(x \in R \backslash \{ -1 \}\), онда је \(f(5)\) једнако:
Број парова \((p,q), p,q \in R\) таквих да је полином \(x^4+px^2+q\) дељив полиномом \(x^2+px+q\), једнак је:
У правој купи угао између изводнице и висине је \(60^{\circ}\) а изводница је за \(2cm\) дужа од висине. Колика је запремина те купе?
Збир свих целих бројева који задовољавају једначину \(\frac{x}{x+2} \leq \frac{1}{1-x}\) је:
Највећа вредност функције \(f(x) = |2x + 1| + |x − 3| − |5x − 4|\) , \(x \in R\) је:
Најкраће растојање између правих \(\sqrt{2}x+y=1\) и \(2x+\sqrt{2}y=3\sqrt{2}\) једнако је:
Опадајућа аритметичка прогресија \((a_n)\) је таква да важи \(a_1^2 + a_2^2 + a_3^2 = 56\) и \(\frac{a_{10}}{a_2}=5\). Тада је \(a_{2014}\) једнако
Скуп решења неједначине \(\log_2(\log_4 x) + \log_4(\log_2 x) < 2\) је:
Странице троугла су \(21\) и \(9\sqrt{2} ,\) а њима захваћени угао \(45^o .\) Збир полупречника уписаног и описаног круга тог троугла је:
Тренутно нема података за приказ графикона!
Попуните образац за слање ваших резултата вашем наставнику.