Задаци

  • 1.      

    Ако је \(A=\frac{1}{6}\left((log_{2}{3})^3- (\log_{2}{6})^3-(\log_{2}{12})^3+(log_{2}{24})^3 \right)\), тада је вредност израза \(2^A\) једнака:

    \(64\)
    \(1\)
    \(36\)
    \(72\)
    \(144\)

    Провери одговоре Не знам

  • 2.      

    Највећа могућа запремина праве купе чија изводница има дужину \(s\) је: 

    \(\frac{\pi s^3\sqrt{3}}{9}\)  
    \(\frac{\pi s^3\sqrt{3}}{27}\)  
    \(\frac{2\pi s^3\sqrt{3}}{27}\)
     \(\frac{2\pi s^3\sqrt{2}}{27}\)
    \(\frac{4\pi s^3\sqrt{3}}{27}\)  

    Провери одговоре Не знам

  • 3.      

    Укупан број реалних решења једначине \(3 tg^{2}x-8\cos^{2} x+1=0\) која пропадају интервалу \((0,2\pi )\) је:

    \(2 \)
    \(5 \)
    \(3 \)
    \(6 \)
    \(4 \)

    Провери одговоре Не знам

  • 4.      

    Ако су \(x_{1}\) и \(x_{2}\) решења квадратне једначине \(x^2+x+1=0\), тада су \(y_{1}=ax_{1}+x_{2}\) и \(y_{2}=x_{1}+ax_{2}\), \((a \in R)\), решења квадратне једначине:

    \(y^{2}+(a+1)y-a^2+a+1=0\)
    \(y^{2}+(a^2+1)y+1=0\)
    ниједан од понуђених одговора
    \(y^{2}+(a^2+1)y+a^2-a+1=0\)
    \(y^{2}+(a+1)y+a^2-a+1=0\)

    Провери одговоре Не знам

  • 5.      

    Ако су \(\alpha\) и \(\beta\) решења једначине \(x^2-2x+5=0\), онда је \(\frac{​\alpha^2+\alpha \beta+ \beta^2}{\alpha^3+\beta^3}\) једнако:

    \(-\frac{1}{22}\)
    \(-\frac{1}{2}\)
    \(\frac{1}{2}\)
    \(\frac{1}{11}\)
    \(\frac{1}{22}\)

    Провери одговоре Не знам

  • 6.      

    Око кружнице полупречника \(2cm\) описан је једнакокраки трапез површине \(20cm^2\). Дужина његовог крака је:

     

    \(10cm\)      
    \(6cm\)
    \(5cm\)  
    \(20cm\)
     такав трапез не постоји

    Провери одговоре Не знам

  • 7.      

    Решење једначине \(2^{16^{x}}=16^{2^{x}}\) јесте:

    \(\frac{1}{2} \)
    \(\frac{2}{3} \)
    \(\frac{4}{5} \)
    \(\frac{5}{6} \)
    \(\frac{3}{4} \)

    Провери одговоре Не знам

  • 8.      

    Дата је аритметичка прогресија \(a_{1},a_{2},a_{3},\dots\) чија је разлика \(d=1\), а збир првих \(98\) чланова \(a_{1}+a_{2}+ \cdots+a_{98}=137\). Тада је збир \(a_{2}+a_{4}+a_{6}+ \cdots+a_{98}\) једнак:

    \(88\)
    \(127\)
    \(103\)
    \(93\)
    \(141\)

    Провери одговоре Не знам

  • 9.      

    Коефициент уз \(x^{27}y^{2}\) у развоју бинома \(\left ( x^{3}+\sqrt{y} \right )^{13}\) једнак је:

    \(715 \)
    \(1516 \)
    \(1312 \)
    \(12 \)
    \(78 \)

    Провери одговоре Не знам

  • 10.      

    Једначина круга чији је центар тачка пресека правих \(x-2y+4=0\) и \(3x+y-9=0\), а који додирује праву \(3x+4y+2 \) гласи:

    \(x^{2}-4x+y^{2}-6y-1=0 \)
    \(x^{2}-4x+y^{2}-6y-3=0 \)
    \(x^{2}-4x+y^{2}-6y+1=0 \)
    \(x^{2}-4x+y^{2}-6y-2=0 \)
    \(x^{2}-4x+y^{2}-6y=0 \)

    Провери одговоре Не знам

  • 11.      

    Укупан број реалних решења једначине \(\sqrt{3\cdot 2^{\log_{10}2x}+1}+\sqrt{2\cdot 2^{\log_{10}2x}+9}=\sqrt{13\cdot 2^{\log_{10}2x}-4}\) је:

    Ниједан од понуђених одговора
    \(3 \)
    \(1 \)
    \(2 \)
    \(0 \)

    Провери одговоре Не знам

  • 12.      

    Бројеви \(a, b, c\) су узастопни чланови растућег аритметичког низа, а бројеви \(a,b,c+1\) су узастопни бројеви геометријског низа. Ако је \(a+b+c=18\), онда је \(a^2+b^2+c^2\) једнако:

    126
    116
    140
    109
    133

    Провери одговоре Не знам

  • 13.      

    Странице троугла су \(21\) и \(9\sqrt{2} ,\) а њима захваћени угао \(45^o .\) Збир полупречника уписаног и описаног круга тог троугла је:

    \(6(\sqrt{3}+2) \)
    \(6(\sqrt{2}-1) \)
    \(6(\sqrt{3}-\sqrt{2}) \)
    \(6(\sqrt{2}+1) \)
    \(3(-\sqrt{3}+2) \)

    Провери одговоре Не знам

  • 14.      

    Ако је \(i^{2}=-1\) и \(\varepsilon\) комплексан број који задовољава услов \(\varepsilon ^{2} + \varepsilon +1=0 ,\) тада је решење једначине \(\frac{x-1}{x+1}=\varepsilon \frac{1+i}{1-i}\) по \(x\) једнако:

    \(2\varepsilon −1−2i \)
    \(2\varepsilon +1−2i \)
    \(−2\varepsilon +1−2i \)
    \(−2\varepsilon −1+2i \)
    \(−2\varepsilon −1−2i \)

    Провери одговоре Не знам

  • 15.      

    Максимална запремина ваљка уписаног у лопту полупречника \(R\) је:

    \(\frac{1}{\sqrt{2}}R^3\pi\)
    \(\frac{2}{3}R^3\pi\)
    \(\frac{4}{3\sqrt{3}}R^3\pi\)
    \(\frac{2}{3\sqrt{3}}R^3\pi\)
    \(\frac{16}{27}R^3\pi\)

    Провери одговоре Не знам

  • 16.      

    Коефицијент уз \(x^{24}\) у развијеном облику степена бинома \((x^2-2x)^{13}\) је:

    312
    -312
    78
    156
    -78

    Провери одговоре Не знам

  • 17.      

    Нека је \(\DeclareMathOperator\tg{tg} \DeclareMathOperator\ctg{ctg} f_1(x)=1, f_2(x)= \tg{\frac{x}{2}}\ctg{\frac{x}{2}}\) и \(\DeclareMathOperator\tg{tg} \DeclareMathOperator\ctg{ctg} f_3(x)= \frac{|\sin x|}{\sqrt{1-\cos^2x}}\). Тачно је тврђење:

    све функције су једнаке међу собом
    међу датим функцијама нема једнаких
    \(f_1=f_2 \neq f_3\)
    \(f_1=f_3 \neq f_2\)
    \(f_1 \neq f_2 = f_3\)

    Провери одговоре Не знам

  • 18.      

    Број \({\left( 1+i \sqrt{3}\right)}^n\), где је \(i^2=-1\), је реалан ако и само ако за неки цео број \(k\) важи:

    \(n=6k\)
    \(n=3k+2\)
    \(n=3k+1\)
    \(n=2k\)
    \(n=3k\)

    Провери одговоре Не знам

  • 19.      

    Ако је \(f \left( \frac{x+3}{x+1} \right)=3x+2\) за \(x \in R \backslash \{ -1 \}\), онда је \(f(5)\) једнако:

    \(-\frac{1}{2}\)
    17
    \(\frac{5}{2}\)
    5
    \(\frac{1}{2}\)

    Провери одговоре Не знам

  • 20.      

    Скуп решења неједначине \(2\ln(1-x)-\ln(2x+6) \leq 0\) је:

    \((-3,5]\)
    \([-2,1)\)
    \([-1,5]\)
    \([-1,1)\)
    \((-3,1)\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време