Задаци

  • 1.      

    Који од датих интервала садржи сва решења једначине \(\frac{x-1}{\sqrt{x}+1}= 4+\frac{\sqrt{x}-1}{2}\)?

    \([1, 6)\)  
    \([6, 10]\)
    \((−1, 1)\)
    \((24, 92]\)
    \((10, 24]\)

    Провери одговоре Не знам

  • 2.      

    Растојање координатног почетка \(O\) правоуглог координатног система \(xOy\) од праве задате једначином \(y=3x+5\) је:

    \(\frac{\sqrt{5}}{2}\)
    \(\frac{3}{2}\)
    \(\frac{\sqrt{10}}{3}\)
    \(\frac{\sqrt{10}}{2}\)
    \(\frac{\sqrt{5}}{3}\)

    Провери одговоре Не знам

  • 3.      

    Коефицијент уз \(x^{24}\) у развијеном облику степена бинома \((x^2 − 2x)^{13}\) је:

    \(156\)  
    \(78\)
    \(-78\)  
    \(312\)
    \(-312\)            

    Провери одговоре Не знам

  • 4.      

    Ако график функције \(y=\frac{1}{x^2-ax+2}\) садржи тачку \(M\left( -3, \frac{1}{19} \right)\) онда је највећа вредност функције једнака:

    \(4\)
    \(\frac{3}{22}\)
    \(\frac{9}{2}\)
    \(\frac{1}{2}\)
    \(\frac{3}{10}\)

    Провери одговоре Не знам

  • 5.      

    Знајући да је \(\cos\left({x-\frac{3\pi}{2}}\right)=-\frac{4}{5}\) и \(\frac{\pi}{2}<x<\pi\), тада је вредност израза \(\sin\frac{x}{2}\cos{\frac{5x}{2}}\) једнака:

    \(1\)
    \(-1\)
    \(\frac{82}{125}\)
    \(\frac{4}{125}\)
    \(-\frac{38}{125}\)

    Провери одговоре Не знам

  • 6.      

    Највећа могућа запремина праве купе чија изводница има дужину \(s\) је: 

    \(\frac{\pi s^3\sqrt{3}}{27}\)  
     \(\frac{2\pi s^3\sqrt{2}}{27}\)
    \(\frac{4\pi s^3\sqrt{3}}{27}\)  
    \(\frac{\pi s^3\sqrt{3}}{9}\)  
    \(\frac{2\pi s^3\sqrt{3}}{27}\)

    Провери одговоре Не знам

  • 7.      

    Ако је \(a\in \mathbb{R}\) и \(\left | a+\frac{1}{a} \right |=3\) тада је \(\left | a-\frac{1}{a} \right |\) једнако:

    \(\sqrt{7} \)
    \(0 \)
    \(\sqrt{2} \)
    \(\sqrt{3} \)
    \(\sqrt{5} \)

    Провери одговоре Не знам

  • 8.      

    Једначина \(\sqrt{1-x}=-x\):

    има тачно два решења
    има тачно једно решење и оно је позитивно
    има тачно једно решење и оно је негативно
    нема решења
    има више од два решења

    Провери одговоре Не знам

  • 9.      

    Број решења једначине \(\sin^2x+cosx+1=0\) на интервалу \((0, 4\pi)\) је:

    4
    2
    0
    1
    3

    Провери одговоре Не знам

  • 10.      

    Која од наведених релација постоји између решења \(x_1\) и \(x_2\) квадратне једначине \((1+m)x^{2}-(6+5m)x+5+6m=0, (m\in \mathbb{R}, m\neq 1) ?\)

    \(4 x_1x_2+x_1+x_2=2 \)
    \(-x_1x_2+x_1+x_2-4=0 \)
    \(-x_1x_2+x_1+x_2+2=0 \)
    \(3x_1x_2+x_1+x_2-1=0 \)
    \(x_1x_2+x_1+x_2-11=0 \)

    Провери одговоре Не знам

  • 11.      

    Ако је \(N\) број шестоцифрених бројева који у свом запису садрже цифру 1 бар на једном месту, тада \(N\) припада интервалу:

    \([4 \cdot 10^5, 5 \cdot 10^5)\)
    \([5 \cdot 10^5, 6 \cdot 10^5)\)
    \([2 \cdot 10^5, 3 \cdot 10^5)\)
    \([3 \cdot 10^5, 4 \cdot 10^5)\)
    \([10^5, 2 \cdot 10^5)\)

    Провери одговоре Не знам

  • 12.      

    Број \((1 + i\sqrt{3})^n\) је реалан ако и само ако ( \(k\) је цео број):

    \(n = 3k\)
    \(n = 2k\)  
    \(n = 3k + 2\)
    \(n = 6k\)
    \(n = 3k + 1\)

    Провери одговоре Не знам

  • 13.      

    Унутрашљи углови конвексног петоугла односе се као 3 : 4 : 5 : 7 : 8. Разлика највећег и најмањег од тих углова је:

    60°
    80°
    100°
    40°
    120°

    Провери одговоре Не знам

  • 14.      

    Дата је аритметичка прогресија \(a_{1},a_{2},a_{3},\dots\) чија је разлика \(d=1\), а збир првих \(98\) чланова \(a_{1}+a_{2}+ \cdots+a_{98}=137\). Тада је збир \(a_{2}+a_{4}+a_{6}+ \cdots+a_{98}\) једнак:

    \(93\)
    \(141\)
    \(88\)
    \(127\)
    \(103\)

    Провери одговоре Не знам

  • 15.      

    Укупан број реалних решења једначине \(\sqrt{3\cdot 2^{\log_{10}2x}+1}+\sqrt{2\cdot 2^{\log_{10}2x}+9}=\sqrt{13\cdot 2^{\log_{10}2x}-4}\) је:

    \(0 \)
    Ниједан од понуђених одговора
    \(3 \)
    \(1 \)
    \(2 \)

    Провери одговоре Не знам

  • 16.      

    Ако је \(a=0,1^{0,1}\), \(b=0,2^{0,2}\) и \(c=0,3^{0,3}\), тада је

    \(c<b<a\)
    \(b<a<c\)
    \(c<a<b\)
    \(a<b<c\)
    \(b<c<a\)

    Провери одговоре Не знам

  • 17.      

    Најмања вредност функције \(f(x)=4x+\frac{9\pi ^{2}}{x}+\sin x, x>0\) је:
     

    \(12\pi -1 \)
    \(\frac{\pi^2-1}{2} \)
    \(5\pi +2 \)
    \(3\pi +1 \)
    \(\frac{5\pi}{2}\)

    Провери одговоре Не знам

  • 18.      

    Ако је \(k \in R\), \(i^{2}=-1\), тада је могудо комплексног броја \(\left(\frac{1+i}{1-i}\right)^{2015}+\frac{-1+5ki}{3i}-1\) најмањи за \(k\) једнако:

    \(3\)
    \(0\)
    \(\frac{3}{5}\)
    \(-\frac{1}{2}\)
    \(\frac{1}{3}\)

    Провери одговоре Не знам

  • 19.      

    Четири младића и четири девојке иду у биоскоп. Имају карте за места у истом реду који има тачно 8 седишта. На колико начина се могу распоредити ако је познато да две од девојака не желе да седа ни на првом ни на последњем месту. 
     

     

    \(\frac{(8!)^2}{2}\)
    \(30\cdot 6!\)
    \(15\cdot 6!\)
    \(2\cdot 6!\)  
    \(\frac{8!}{4!}\)

    Провери одговоре Не знам

  • 20.      

    Око кружнице полупречника \(2cm\) описан је једнакокраки трапез површине \(20cm^2\). Дужина његовог крака је:

     

    \(6cm\)
    \(20cm\)
    \(10cm\)      
     такав трапез не постоји
    \(5cm\)  

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време