Задаци

  • 1.      

    Коефицијент уз \(x^{24}\) у развијеном облику степена бинома \((x^2 − 2x)^{13}\) је:

    \(156\)  
    \(312\)
    \(-312\)            
    \(78\)
    \(-78\)  

    Провери одговоре Не знам

  • 2.      

    Која од наведених релација постоји између решења \(x_1\) и \(x_2\) квадратне једначине \((1+m)x^{2}-(6+5m)x+5+6m=0, (m\in \mathbb{R}, m\neq 1) ?\)

    \(-x_1x_2+x_1+x_2-4=0 \)
    \(4 x_1x_2+x_1+x_2=2 \)
    \(3x_1x_2+x_1+x_2-1=0 \)
    \(x_1x_2+x_1+x_2-11=0 \)
    \(-x_1x_2+x_1+x_2+2=0 \)

    Провери одговоре Не знам

  • 3.      

    Бројеви \(a, b, c\) су узастопни чланови растућег аритметичког низа, а бројеви \(a,b,c+1\) су узастопни бројеви геометријског низа. Ако је \(a+b+c=18\), онда је \(a^2+b^2+c^2\) једнако:

    140
    109
    116
    133
    126

    Провери одговоре Не знам

  • 4.      

    Правилна четворострана призма пресечена је са равни која садржи основну ивицу призме. Ако је површина пресека равни призме два пута већи од површине базе, тада је угао између те равни и базе призме једнак:

    \(45^o \)
    \(60^o \)
    \(75^o \)
    \(30^o \)
    \(15^o \)

    Провери одговоре Не знам

  • 5.      

    Четири младића и четири девојке иду у биоскоп. Имају карте за места у истом реду који има тачно 8 седишта. На колико начина се могу распоредити ако је познато да две од девојака не желе да седа ни на првом ни на последњем месту. 
     

     

    \(15\cdot 6!\)
    \(2\cdot 6!\)  
    \(\frac{8!}{4!}\)
    \(\frac{(8!)^2}{2}\)
    \(30\cdot 6!\)

    Провери одговоре Не знам

  • 6.      

    Израз \(a \sqrt{a} \cdot \sqrt[4]{a^3}\), \(a \geq 0\), идентички је једнак изразу:

    \(\sqrt[4]{a^{11}}\)
    \(\sqrt[4]{a^9}\)
    \(a^6\)
    \(a^2\)
    \(\sqrt[4]{a^7}\)

    Провери одговоре Не знам

  • 7.      

    За коју вредност реалног параметра \(m\) израз \(x_1^3  + x_2^3\), где су \(x_1\) и  \(x_2\) решења квадратне једначине \(x^2 − x + m^2 + 2m − 3 = 0\), узима максималну вредност?
     

    \(0\)  
    \(2\) 
    \(−1\) 
    \(1\)
    \(2\)

    Провери одговоре Не знам

  • 8.      

    Средиште горње основе коцке и средишта ивица њене доње основе су темена пирамиде. Ако је ивица коцке \(2cm\), површина омотача пирамиде је:

    \(4\sqrt{3}{cm}^2\)
    \(6{cm}^2\)
    \(9{cm}^2\)
    \(3\sqrt{2}{cm}^2\)
    \(4\sqrt{2}{cm}^2\)

    Провери одговоре Не знам

  • 9.      

    Укупан број реалних решења једначине \(\sqrt{3\cdot 2^{\log_{10}2x}+1}+\sqrt{2\cdot 2^{\log_{10}2x}+9}=\sqrt{13\cdot 2^{\log_{10}2x}-4}\) је:

    Ниједан од понуђених одговора
    \(3 \)
    \(1 \)
    \(2 \)
    \(0 \)

    Провери одговоре Не знам

  • 10.      

    Једначина \(\sqrt{1-x}=-x\) :

    има тачно два решења
    нема решења                
    има више од два решење
    има тачно једно решење и оно је негативно
    има тачно једно решење и оно је позитивно

    Провери одговоре Не знам

  • 11.      

    Последња цифра броја \(7^{2009}\) је:

    1
    9
    5
    7
    3

    Провери одговоре Не знам

  • 12.      

    Коефициент уз \(x^{27}y^{2}\) у развоју бинома \(\left ( x^{3}+\sqrt{y} \right )^{13}\) једнак је:

    \(12 \)
    \(78 \)
    \(1516 \)
    \(1312 \)
    \(715 \)

    Провери одговоре Не знам

  • 13.      

    Једно од реалних решења једначине \(\log_{\cos{x}}\sin{x}=4\log_{\sin{x}}\cos{x}\) припада интервалу:

    \(\left(\frac{\pi}{6}, \frac{\pi}{4} \right]\)
    \(\left(\frac{\pi}{4}, \frac{\pi}{3} \right]\)
    \(\left[\frac{5\pi}{6}, \pi \right)\)
    \(\left(0, \frac{\pi}{6} \right]\)
    \(\left(\frac{\pi}{3}, \frac{\pi}{2} \right)\)

    Провери одговоре Не знам

  • 14.      

    Ако се зна да \(\frac{14}{9}\) биномног коефицијента трећег члана, биномни коефицијент четвртог члана и биномни коефицијент петог члана у развоју бинома \(\left( \sqrt[3]{x}+\frac{1}{\sqrt{x}} \right)^n\)\((n \in N, x>0)\), чине геометријску прогресију, тада је биномни коефицијент уз \(\sqrt{x}\) једнак:

    \(21\)
    \(5\)
    \(84\)
    \(48\)
    \(1\)

    Провери одговоре Не знам

  • 15.      

    Унутрашљи углови конвексног петоугла односе се као 3 : 4 : 5 : 7 : 8. Разлика највећег и најмањег од тих углова је:

    100°
    60°
    80°
    120°
    40°

    Провери одговоре Не знам

  • 16.      

    Вредност израза \(8\sin ^2 80^o-2\sqrt{3}\sin 40^o-2\cos 40^o\) једнака је:

    \(4 \)
    \(1 \)
    \(2\sqrt{3}\)
    \(2\)
    \(4\sqrt{3} \)

    Провери одговоре Не знам

  • 17.      

    Највећа могућа запремина праве купе чија изводница има дужину \(s\) је: 

    \(\frac{\pi s^3\sqrt{3}}{9}\)  
     \(\frac{2\pi s^3\sqrt{2}}{27}\)
    \(\frac{4\pi s^3\sqrt{3}}{27}\)  
    \(\frac{2\pi s^3\sqrt{3}}{27}\)
    \(\frac{\pi s^3\sqrt{3}}{27}\)  

    Провери одговоре Не знам

  • 18.      

    Опадајућа аритметичка прогресија \((a_n)\) је таква да важи \(a_1^2  + a_2^2  + a_3^2  = 56\)  и \(\frac{a_{10}}{a_2}=5\). Тада је \(a_{2014}\) једнако

    \(4030\)
    \(4028\)      
    \(−4028\)
    таква прогресија не постоји 
    \(−4030\)

    Провери одговоре Не знам

  • 19.      

    Решење једначине \(2^{16^{x}}=16^{2^{x}}\) јесте:

    \(\frac{5}{6} \)
    \(\frac{1}{2} \)
    \(\frac{2}{3} \)
    \(\frac{3}{4} \)
    \(\frac{4}{5} \)

    Провери одговоре Не знам

  • 20.      

    Број реалиних решења једначине \(f(x)+f(f(x))=x\), где је \(f(x)=|x|+a\)\(a>0\) једнак је:

    \(3\)
    \(2\)
    \(4\)
    \(1\)
    \(0\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време