Пријемни испит
Број поена
Електротехнички,Природно Математички и Фармацеутски факултет
Ако је \(a=\log_{2}3\) и \(b=\log_{5}2 \), тада је \(\log_{24}50\) једнако:
Реалан део комплексног броја \( \frac{1}{2-\sqrt{5}+i\sqrt{3}}\) је:
Ако је \(a=0,1^{0,1}\), \(b=0,2^{0,2}\) и \(c=0,3^{0,3}\), тада је
Скуп свих реалних вредности за које важи неједнакост \(|4^{3x}-2^{4x+2}\cdot3^{x+1}+20\cdot12^x\cdot3^x|\geq8\cdot6^x(8^{x-1}+6^x)\) је облика (за неке реалне бројеве \(a, b, c\) и \(d\) такве да је \(-\infty<a<b<c<d<\infty\)):
Број парова \((p,q), p,q \in R\) таквих да је полином \(x^4+px^2+q\) дељив полиномом \(x^2+px+q\), једнак је:
Коефицијент уз \(x^{24}\) у развијеном облику степена бинома \((x^2 − 2x)^{13}\) је:
Укупан број реалних решења једначине \(\sqrt{3\cdot 2^{\log_{10}2x}+1}+\sqrt{2\cdot 2^{\log_{10}2x}+9}=\sqrt{13\cdot 2^{\log_{10}2x}-4}\) је:
Израз \(a \sqrt{a} \cdot \sqrt[4]{a^3}\), \(a \geq 0\), идентички је једнак изразу:
Најмања вредност функције \(f(x)=4x+\frac{9\pi ^{2}}{x}+\sin x, x>0\) је:
Укупан број дијагонала правилног десетоугла је:
Једначина \(\sqrt{1-x}=-x\):
Најкраће растојање између правих \(\sqrt{2}x+y=1\) и \(2x+\sqrt{2}y=3\sqrt{2}\) једнако је:
Укупан број парова \((x,y)\) целих бројева таквих да важи \(|x^2-2x|-y<\frac{1}{2}\) и \(y+|x-1|<2\) је:
Број \({\left( 1+i \sqrt{3}\right)}^n\), где је \(i^2=-1\), је реалан ако и само ако за неки цео број \(k\) важи:
Коефицијент уз \(x^{24}\) у развијеном облику степена бинома \((x^2-2x)^{13}\) је:
Четири младића и четири девојке иду у биоскоп. Имају карте за места у истом реду који има тачно 8 седишта. На колико начина се могу распоредити ако је познато да две од девојака не желе да седа ни на првом ни на последњем месту.
Скуп свих решења неједначине \(\frac{\left | 1-x \right |}{1-\left | x \right |}<\frac{1+\left | x \right |}{\left | 1+x \right |}\) је облика (за неке реалне бројеве \(a\) и \(b\) такве да је \(0 < a < b < + \infty ):\)
На колико начина се у ред могу поређати 5 ученика и 2 ученице, тако да ученице не стоје једна до друге?
Вредност израза \(\left( 1-sin\frac{\pi}{8} \right)\left( 1+sin\frac{\pi}{8} \right)\) је:
Ако права \(y = 2x + p\) у равни \(Oxy ( p \in R )\) додирује параболу \(y = x^2 − x\), онда \(p\) припада интервалу:
Тренутно нема података за приказ графикона!
Попуните образац за слање ваших резултата вашем наставнику.