Пријемни испит
Број поена
Електротехнички,Природно Математички и Фармацеутски факултет
Коефицијент уз \(x^{24}\) у развијеном облику степена бинома \((x^2-2x)^{13}\) је:
Скуп свих реалних вредности за које важи неједнакост \(|4^{3x}-2^{4x+2}\cdot3^{x+1}+20\cdot12^x\cdot3^x|\geq8\cdot6^x(8^{x-1}+6^x)\) је облика (за неке реалне бројеве \(a, b, c\) и \(d\) такве да је \(-\infty<a<b<c<d<\infty\)):
Ако права \(y = 2x + p\) у равни \(Oxy ( p \in R )\) додирује параболу \(y = x^2 − x\), онда \(p\) припада интервалу:
Најкраће растојање између правих \(\sqrt{2}x+y=1\) и \(2x+\sqrt{2}y=3\sqrt{2}\) једнако је:
Највећа могућа запремина праве купе чија изводница има дужину \(s\) је:
Израз \(a \sqrt{a} \cdot \sqrt[4]{a^3}\), \(a \geq 0\), идентички је једнак изразу:
Број \((1 + i\sqrt{3})^n\) је реалан ако и само ако ( \(k\) је цео број):
Вредност израза \( \frac{1-tg^215^{\circ}}{1+tg^215^{\circ}}\) је:
Странице троугла су \(21\) и \(9\sqrt{2} ,\) а њима захваћени угао \(45^o .\) Збир полупречника уписаног и описаног круга тог троугла је:
Која од наведених релација постоји између решења \(x_1\) и \(x_2\) квадратне једначине \((1+m)x^{2}-(6+5m)x+5+6m=0, (m\in \mathbb{R}, m\neq 1) ?\)
Бројеви \(a, b, c\) су узастопни чланови растућег аритметичког низа, а бројеви \(a,b,c+1\) су узастопни бројеви геометријског низа. Ако је \(a+b+c=18\), онда је \(a^2+b^2+c^2\) једнако:
Једначина \(\sqrt{1-x}=-x\) :
Растојање координатног почетка \(O\) правоуглог координатног система \(xOy\) од праве задате једначином \(y=3x+5\) је:
Једна катета правоуглог троугла је \(8cm\), а хипотенуза је \(17cm\). Полупречник уписаног круга тог троугла је:
Скуп решења неједначине \(2\ln(1-x)-\ln(2x+6) \leq 0\) је:
Збир свих целих бројева који задовољавају једначину \(\frac{x}{x+2} \leq \frac{1}{1-x}\) је:
Сва реална решења једначине \(\frac{x+\sqrt{3}}{\sqrt{3}+\sqrt{x+\sqrt{3}}}+\frac{x-\sqrt{3}}{\sqrt{3}-\sqrt{x-\sqrt{3}}}=\sqrt{x}\) налазе се у скупу:
Средиште горње основе коцке и средишта ивица њене доње основе су темена пирамиде. Ако је ивица коцке \(2cm\), површина омотача пирамиде је:
Једначина \(\sqrt{1-x}=-x\):
Ако је \(A=\frac{1}{6}\left((log_{2}{3})^3- (\log_{2}{6})^3-(\log_{2}{12})^3+(log_{2}{24})^3 \right)\), тада је вредност израза \(2^A\) једнака:
Тренутно нема података за приказ графикона!
Попуните образац за слање ваших резултата вашем наставнику.