Задаци

  • 1.      

    Различитих петоцифрених бројева, у чијем се запису користе две цифре 2 и по једна цифра 3, 4 и 5, има:

    \( 60 \)
    \(  30    \)
    \(   40 \)
    \(     240    \)   
    \(    120     \)

    Провери одговоре Не знам

  • 2.      

    Ако је запремина правог ваљка \(V=6\pi\), а површина његовог омотача \(M=4\pi\), тада је однос полупречника основе \(r \) и висине \(H, \frac{r}{H}\) једнак: 

    \(3 \)
     \(4\)  
    \(4,5\)
    \(2\)  
    \(2,5\)

    Провери одговоре Не знам

  • 3.      


     Број решења једначине \(2\sin^2x=\sin2x\) на интервалу \([-\pi,\pi]\) једнак је

    5
    4
    3      
    6

    Провери одговоре Не знам

  • 4.      

    Нека је \(S\) скуп свих целобројних вредности параметра \(m\) за које једначина \(x^2-(m-3)x+5+m=0\) има оба решења негативна. Број елемената скупа \(S\) је:

     

    \(4\)
    \(6\)  
    \(3\)    
    \(>7\)
    \(7 \)  

    Провери одговоре Не знам

  • 5.      

    Ако је лопта запремине \(V_1\) уписана у коцку запремине \(V_2\) , тада је \(\frac{V_1}{V_2}\) једнако:

    \(   \frac{\pi}{4}    \)  
    \(   \frac{\pi}{3} \)
    \(  \frac{\pi}{8}    \)
    \(    \frac{2\pi}{9}    \) 
    \(  \frac{\pi}{6}  \)

    Провери одговоре Не знам

  • 6.      

    Целих бројева \(x\) за које важи неједналост  \(x+1>\sqrt{5-x}\)  има:
     

     

    \(5\)  
    \(3\)  
    \(2\)
    \(4\)  
    \(1\)     

    Провери одговоре Не знам

  • 7.      

    Нека је \(a_n\) аритметички низ, \(a_1=4 \). Ако је збир првих пет чланова тог низа \(90,\) тада је \(a_{15}\) једнако:

    \(   100      \)  
    \(    108 \)  
    \( 102  \)
    \(  104    \)
    \(   106   \)

    Провери одговоре Не знам

  • 8.      

    Дате су функције \(f_1(x)=x, f_2(x)=\sqrt{x^2}\) и \(f_3(x)=(\sqrt{x})^2 .\) Тачан је исказ:

    \(  f_1\neq f_2 \neq f_3 \neq f_1 \)
    \(  f_1 = f_2 = f_3  \)
    \(   f_3 = f_1 \neq f_2   \)  
    \( f_1 = f_2 \neq f_3    \) 
    \(   f_1 \neq f_2 = f_3   \)

    Провери одговоре Не знам

  • 9.      

    Производ свих реалних решења једначине \(3|x|=12-x\) једнак је:

    \(  -18     \)
    \(    3  \) 
    \(    6\) 
    \(   -6\)
    \(  -12     \)

    Провери одговоре Не знам

  • 10.      

    Дате су тачке \(A(1,2), B(4,-7), C(6,-3).\) Ако је \(D(x_0, y_0)\) подножје висине спуштене из тачке \(C\) на страницу \(AB\), троугла \(ABC\) тада је \(x_0\cdot y_0\) једнако:

     

    \(4\)
     \( 8\)
    \(-12\)
    \(-6 \)        
    \( 16\)

    Провери одговоре Не знам

  • 11.      

    Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+10\sqrt{3}x+6\sqrt{3}=0\) тада је \(\frac{1}{x_1}+\frac{1}{x_2}\) једнако:

    \(            \frac{5}{3}          \)  
    \(   \frac{3}{5}     \)
    \(  -\frac{\sqrt{3}}{6}     \)
    \(    -\frac{3}{5}   \)  
    \( -\frac{5}{3}     \)

    Провери одговоре Не знам

  • 12.      

    Површина правог ваљка је \(P = 8\pi cm^2 \), а висина му је за \(1cm\) краћа од пречника основе. Запремина ваљка је:

    \( 5\pi cm^3 \) 
    \( \frac{80}{27}\pi cm^3 \)
    \( 3\pi cm^3 \) 
    \( \frac{40}{9}\pi cm^3 \) 
    \( \frac{40}{27}\pi cm^3 \) 

    Провери одговоре Не знам

  • 13.      

    Комплексан број  \(\frac{2\cdot i^{2013}}{1+i}\) једнак је:

    \(   -1+i     \)
    \(  1+i \)
    \(  1-i   \)
    \(    i  \)  
    \(   -1-i    \)  

    Провери одговоре Не знам

  • 14.      

    Ако је \(\sin\alpha=\frac{15}{17}, \frac{\pi}{2}<\alpha<\pi\), тада је \(\cos(\frac{\pi}{4}-\alpha)\) једнако:

     
     

    \(\frac{23\sqrt{2}}{34}\)  
    \(-\frac{23\sqrt{2}}{34}\)    
    \(\frac{7\sqrt{2}}{34}\) 
    \(-\frac{15\sqrt{2}}{34}\)  
    \(-\frac{7\sqrt{2}}{34} \)  

    Провери одговоре Не знам

  • 15.      

     Ако је полином \(P(x)=x^{2014}+x^{2013}+ax+b\) дељив полиномом \(Q(x)=x^2-1\), тада је \(2a-5b\) једнако:


     

    \(-12\) 
    \(-3\)  
    \(3\)
    \(7\)
    \(-7\)

    Провери одговоре Не знам

  • 16.      

    Из тачке \(A(3,4) \) постављена је нормала \(n\) на праву \(p:4x-2y+1=0\) . Ако се праве \(p \) и \(n\) секу у тачки \(S(x_S,y_S)\) , тада је \(x_S\cdot y_S\) једнако:

    \(    \frac{39}{2}   \)  
    \(   \frac{38}{9}   \)
    \(  9  \)
    \(   \frac{5}{2}   \)  
    \(  7    \)

    Провери одговоре Не знам

  • 17.      

    Ако је \((x ,y), x, y\in R, 0 < x \leq y\), решење система једначина \(x^2+y^2=51, xy=12\) тада је \(y - x^3\) једнако:

    \( \sqrt{3}  \)
    \(    -\sqrt{3}        \)  
    \(   -1    \)
    \(  1       \)
    \(     2\sqrt{3}       \)  

    Провери одговоре Не знам

  • 18.      

    Шестоцифрених бројева дељивих са 2, код којих су све цифре различите, направљених од цифара 0 , 1, 2 , 3 , 4 , 5 има:

    \(            288      \)  
    \(  360    \)
    \(   120   \)
    \(    216  \)  
    \( 312   \)

    Провери одговоре Не знам

  • 19.      

    Разлика највећег и намањег решења једначине \(\sqrt{x-3}+\sqrt{8-x}=3\) једнак је:

    \(2\)
    \(4\)  
    \( 1 \)  
    \(5 \)  
    \(3\)

    Провери одговоре Не знам

  • 20.      

    Збир прва три члана аритметичког низа је \(21\), а разлика трећег и првог члана је \(6\). Осми члан тог низа једнак је:

     

    \(28\)    
    \(25\)
    \( 27\)
    \(24\)        
    \(26\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време