Задаци

  • 1.      

    Тачка \(A\left ( 5,\frac{12}{5} \right )\) и жиже елипсе \(\frac{x^2}{169}+\frac{y^2}{144}=1\) су темена троугла \(ABC\) . Обим датог троугла је:

    \(32 \)
    \(28 \)
    \(34 \)
    \(36 \)
    \(30 \)

    Провери одговоре Не знам

  • 2.      

     Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+5x-9=0\), тада је \(x^3_1+x^3_2\) једнако:

     \(-170\)
    \(170\)
    \(-260\)
    \(-10\)        
    \(10\)  

    Провери одговоре Не знам

  • 3.      

    Нека је \(f(x) = x^2 + 1\) и \(g(x) = 3x - 2\). Тада је вредност \(f(g^{-1} (4)) - g^{-1} (f(3))\) једнака:

     

     

    \(3\)  
    \(-1\)  
    \(1\)
    \(-3\)  
    \(0\)        

    Провери одговоре Не знам

  • 4.      

    Број свих целобројних решења неједначине \(\frac{4x^{2}-5x-39}{x^{2}-x-12}\leqslant 3\) је:

    \(3 \)
    \(0 \)
    \(2\)
    \(6\)
    \(1 \)

    Провери одговоре Не знам

  • 5.      

    Тангенте постављене из тачке \(A(2,4)\) на кружницу \(x^2+y^2=2\) секу осу \(Oy\) у тачкама \(B\) и \(C\). Површина троугла \(ABC\) једнака је:

     

    \(12\)
    \(16\)
     \(8\)
    \(6 \)       
    \(10\)  

    Провери одговоре Не знам

  • 6.      

    Број свих петоцифрених бројева дељивих са 5, који имају тачно једну непарну цифру, једнак је:

    \(4\cdot 5^{4}\)
    \(24\cdot 5^{3}\)
    \(18\cdot 5^{3}\)
    \(21\cdot 5^{3}\)
    \(55\cdot 5^{2}\)

    Провери одговоре Не знам

  • 7.      

    Ако је \(J=\frac{a+b}{a-b}\frac{a-b}{a+b}, a=\sqrt{3}, b=\sqrt{2} \) тада је \(J\) једнако:

     

    \(5\)  
    \(5-2\sqrt{6}\)
    \(1\)    
     \(1+2\sqrt{6}\)
    \(10\)

    Провери одговоре Не знам

  • 8.      

    Број различитих решења једначине \(1 + \sin 2x - 2\sin x = \cos 2x\) на интервалу \([0,3\pi]\) је:

    \(    2     \)  
    \(   4\)
    \(     5    \)  
    \( 6 \)
    \(  3    \)

    Провери одговоре Не знам

  • 9.      

    Ако је \(log_23=a \), тада је \(log_64\) једнако:

    \(   \frac{1}{1+2a}       \)
    \(  \frac{2}{1+a}  \)
    \( \frac{1}{2(1+a)}  \)  
    \(  -2(1+a) \)
    \(       \frac{1}{2+a}     \)  

    Провери одговоре Не знам

  • 10.      

    Комплексан број  \(\frac{2\cdot i^{2013}}{1+i}\) једнак је:

    \(    i  \)  
    \(   -1+i     \)
    \(   -1-i    \)  
    \(  1+i \)
    \(  1-i   \)

    Провери одговоре Не знам

  • 11.      

    Једначина праве која пролази кроз тачке \(A(-1,1)\) и \(B(1,4)\) гласи:

    \( 3x – 2y + 5 = 0 \)
    \( 3x + 2y - 5 = 0 \) 
    \( 2x - 3y + 5 = 0 \) 
    \( x – 2y + 5 = 0 \) 
    \( x – y + 2 = 0 \) 

    Провери одговоре Не знам

  • 12.      

     Реално решење једначине \(\sqrt{3x+2}-\sqrt{2x-2}=\sqrt{x} \) припада интервалу:

    \((3,+ \infty) \)
    \(\left (1,2 \right ]\)
    \(\left ( -\infty \right ]\)
    \(\left (2,3 \right ]\)
    \(\left (0,1 \right ]\)

    Провери одговоре Не знам

  • 13.      

    Комплексни број \(\frac{11+2i}{3-4i}\) једнак је:

     

     \(1-i\)
    \(2-i\)
    \(1-2i\)  
    \(1+2i\)
    \(2+i\)      

    Провери одговоре Не знам

  • 14.      

     Ако је \(log_\sqrt{5}\), тада је \(log_{10}2\) једнако: 

     

    \(\frac{1}{2a+1}\)
    \(\frac{1}{a+2}\)
     \(\frac{1}{2(a+1)} \)  
    \(\frac{a+1}{2}\)     
    \(\frac{2}{a+1}\)

    Провери одговоре Не знам

  • 15.      

    Ако је \((x ,y), x, y\in R, 0 < x \leq y\), решење система једначина \(x^2+y^2=51, xy=12\) тада је \(y - x^3\) једнако:

    \(    -\sqrt{3}        \)  
    \(     2\sqrt{3}       \)  
    \( \sqrt{3}  \)
    \(   -1    \)
    \(  1       \)

    Провери одговоре Не знам

  • 16.      

    Збир прва три члана аритметичког низа је \(21\), а разлика трећег и првог члана је \(6\). Осми члан тог низа једнак је:

     

    \( 27\)
    \(24\)        
    \(28\)    
    \(25\)
    \(26\)

    Провери одговоре Не знам

  • 17.      

     Ако је полином \(P(x)=x^{2014}+x^{2013}+ax+b\) дељив полиномом \(Q(x)=x^2-1\), тада је \(2a-5b\) једнако:


     

    \(-3\)  
    \(-7\)
    \(3\)
    \(-12\) 
    \(7\)

    Провери одговоре Не знам

  • 18.      

    Скуп свих решења неједначине \(\frac{|x-2|}{x^2-3x+2}\geq 2\) у скупу реалних бројева je:

     

    \((1,+\infty)\)  
    \((-\infty, \frac{1}{2}]\cup (1,+\infty)\)
    \((-\infty, \frac{1}{2}]\)          
    \((1,3)\) 
    \([\frac{1}{2},1]\)

    Провери одговоре Не знам

  • 19.      

    Збир свих девет чланова аритметичке прогресије је за \(164\) већи од збира првих пет чланова те прогресије. Ако је девети члан за \(14\) мањи од двоструке вредности шестог члана, онда је производ прва два члана дате прогресије једнак:

    \(-12\)
    \(20\)
    \(12\)
    \(16\)
    \(-16\)

    Провери одговоре Не знам

  • 20.      

    Укупна цена две књиге износи \(2600\) . Уколико би се цена прве књиге увећала за \(150\) динара и цена друге умањила за \(150\) динара, тада би цена друге износила \(30\%\) цене прве књиге. Разлика цене прве и друге књиге (у динарима) једнака је:

    \(1200 \)
    \(1250 \)
    \(1050 \)
    \(1100 \)
    \(1150 \)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време