Пријемни испит
Број поена
Саобраћајни, Технички, Машински и Факултет организационих наука
Шестоцифрених бројева дељивих са 2, код којих су све цифре различите, направљених од цифара 0 , 1, 2 , 3 , 4 , 5 има:
Број решења једначине \(|x-1|+2x=5\) је:
Ако је полином \(P(x)=x^{2014}+x^{2013}+ax+b\) дељив полиномом \(Q(x)=x^2-1\), тада је \(2a-5b\) једнако:
Ако су странице троугла \(a=1, b=3\sqrt{2}, c=5\), тада је највећи угао једнак:
Збир највећег негативног и најмањег позитивног решења неједначине \(\cos ^{4}x-\sin ^{4}x=1+\sin x\) је:
Збир квадрата свих решења једначине \(4^x=2^{\frac{x+1}{x}}\) је:
Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+5x-9=0\), тада је \(x^3_1+x^3_2\) једнако:
Једначина праве која пролази кроз тачке \(A(-1,1)\) и \(B(1,4)\) гласи:
Ако је \(z=1+i \), тада је \(z^4\) :
Скуп свих решења неједначине \(\frac{4x-3}{x-2}>3\) је:
Десетоцифрених бројева чије су све цифре међусобно различите и који су дељиви са 5 има:
Ако је \(J=\frac{a+b}{a-b}\frac{a-b}{a+b}, a=\sqrt{3}, b=\sqrt{2} \) тада је \(J\) једнако:
Ако је \( a=\log_{\sqrt{2}}\sqrt[3]{64}-\sqrt[3]{3}^{\log_{\sqrt{3}}27}\), онда је вредност израза \((a+9)^{a+\frac{9}{2}}\) једнака:
Комплексни број \(\frac{11+2i}{3-4i}\) једнак је:
Ако је запремина правог ваљка \(V=6\pi\), а површина његовог омотача \(M=4\pi\), тада је однос полупречника основе \(r \) и висине \(H, \frac{r}{H}\) једнак:
Израз \((a^{-1}+b^{-1})^{-1}:(b^{-1}-a^{-1})^{-1}, (a,b\neq0, a\neq b)\) идентички је једнак изразу:
Око праве правилне четворостране призме запремине \(128 cm^3\) описан је кружни ваљак тако да основа призме припадају одговарајућим основама ваљка. Запремина тог ваљка ( у \(cm^3\) ) износи:
Основе правог ваљка и праве купе су кругови полупречника \(12 cm\). Ако су запремине ваљка и купе једнаке, а висина купе за \(6 cm\) дужа од висине ваљка, онда је однос површина ваљка и купе једнак:
Ако је \(\alpha=\frac{1}{3}\) и \(0<\alpha<\frac{\pi}{2} ,\) тада је \(tg2\alpha\) :
Нека је \(ax + b\) остатак који се добија дељењем полинома \(P(x)=x^{2013}-64x^{2007}+65\) полиномом \(Q(x) = x^2 - 3x + 2\) . Tada je vrednost izraza \(a + b\) једнака
Тренутно нема података за приказ графикона!
Попуните образац за слање ваших резултата вашем наставнику.