Задаци

  • 1.      

    Сва реална решења једначине \(\frac{x+\sqrt{3}}{\sqrt{3}+\sqrt{x+\sqrt{3}}}+\frac{x-\sqrt{3}}{\sqrt{3}-\sqrt{x-\sqrt{3}}}=\sqrt{x}\) налазе се у скупу:

    \((2\sqrt{3},3\sqrt{3})\)
    \(\emptyset\)
    \([6,8)\)
    \([\sqrt{3},2\sqrt{3})\)
    \([3\sqrt{3},6)\)

    Провери одговоре Не знам

  • 2.      

    Ако за дијагонале ромба важи једнакост \(d_1=(2-\sqrt{3})d_2\), тада је оштар угао ромба једнак:

    \(22,5^{\circ}\)
    \(30^{\circ}\)
    \(15^{\circ}\)
    \(60^{\circ}\)
    \(45^{\circ}\)

    Провери одговоре Не знам

  • 3.      

    Ако је \(k \in Z\) и \(0,0010101 \cdot 10^{k}>1001\), која је намања могућа вредност за \(k\)?

    \(-6\)
    \(6\)
    \(5\)
    \(-5\)
    \(0\)

    Провери одговоре Не знам

  • 4.      

    Која од наведених релација постоји између решења \(x_1\) и \(x_2\) квадратне једначине \((1+m)x^{2}-(6+5m)x+5+6m=0, (m\in \mathbb{R}, m\neq 1) ?\)

    \(-x_1x_2+x_1+x_2-4=0 \)
    \(x_1x_2+x_1+x_2-11=0 \)
    \(-x_1x_2+x_1+x_2+2=0 \)
    \(4 x_1x_2+x_1+x_2=2 \)
    \(3x_1x_2+x_1+x_2-1=0 \)

    Провери одговоре Не знам

  • 5.      

    Коефициент уз \(x^{27}y^{2}\) у развоју бинома \(\left ( x^{3}+\sqrt{y} \right )^{13}\) једнак је:

    \(12 \)
    \(78 \)
    \(715 \)
    \(1516 \)
    \(1312 \)

    Провери одговоре Не знам

  • 6.      

    Ако је \(i^{2}=-1\) и \(\varepsilon\) комплексан број који задовољава услов \(\varepsilon ^{2} + \varepsilon +1=0 ,\) тада је решење једначине \(\frac{x-1}{x+1}=\varepsilon \frac{1+i}{1-i}\) по \(x\) једнако:

    \(−2\varepsilon −1−2i \)
    \(−2\varepsilon +1−2i \)
    \(−2\varepsilon −1+2i \)
    \(2\varepsilon −1−2i \)
    \(2\varepsilon +1−2i \)

    Провери одговоре Не знам

  • 7.      

    Једначина круга чији је центар тачка пресека правих \(x-2y+4=0\) и \(3x+y-9=0\), а који додирује праву \(3x+4y+2 \) гласи:

    \(x^{2}-4x+y^{2}-6y-3=0 \)
    \(x^{2}-4x+y^{2}-6y+1=0 \)
    \(x^{2}-4x+y^{2}-6y=0 \)
    \(x^{2}-4x+y^{2}-6y-2=0 \)
    \(x^{2}-4x+y^{2}-6y-1=0 \)

    Провери одговоре Не знам

  • 8.      

    Дата је аритметичка прогресија \(a_{1},a_{2},a_{3},\dots\) чија је разлика \(d=1\), а збир првих \(98\) чланова \(a_{1}+a_{2}+ \cdots+a_{98}=137\). Тада је збир \(a_{2}+a_{4}+a_{6}+ \cdots+a_{98}\) једнак:

    \(88\)
    \(127\)
    \(103\)
    \(141\)
    \(93\)

    Провери одговоре Не знам

  • 9.      

    Скуп свих реалних вредности за које важи неједнакост \(|4^{3x}-2^{4x+2}\cdot3^{x+1}+20\cdot12^x\cdot3^x|\geq8\cdot6^x(8^{x-1}+6^x)\) је облика (за неке реалне бројеве \(a, b, c\) и \(d\) такве да је \(-\infty<a<b<c<d<\infty\)):

    \((-\infty,a)\cup[b,c)\)
    \((-\infty,a]\cup[b,c]\cup[d,+\infty)\)
    \((-\infty,a]\cup(b,c)\)
    \((a,b)\cup\{c\}\)
    \((-\infty,a)\cup(d,+\infty)\)

    Провери одговоре Не знам

  • 10.      

    Кружница пролази кроз крајње тачке једне странице квадрата и кроз средиште наспрамне странице. Ако је страница квадрата дужине \(a\), онда је пречник кружнице једнак: 

     \(\frac{3a}{2}\)  
    \(\frac{3a}{\sqrt{2}}\)  
    \(\frac{\sqrt{5}a}{4}\)
    \(\frac{5a}{4}\)
    \(\frac{a+1}{a}\)

    Провери одговоре Не знам

  • 11.      

    Ако се зна да \(\frac{14}{9}\) биномног коефицијента трећег члана, биномни коефицијент четвртог члана и биномни коефицијент петог члана у развоју бинома \(\left( \sqrt[3]{x}+\frac{1}{\sqrt{x}} \right)^n\)\((n \in N, x>0)\), чине геометријску прогресију, тада је биномни коефицијент уз \(\sqrt{x}\) једнак:

    \(21\)
    \(5\)
    \(48\)
    \(84\)
    \(1\)

    Провери одговоре Не знам

  • 12.      

    Реалан део комплексног броја \( \frac{1}{2-\sqrt{5}+i\sqrt{3}}\) је:

    \(\frac{(\sqrt{5}-3)\sqrt{3}}{16}\)
    \(\frac{1-\sqrt{5}}{4}\)
    \(\frac{1}{3-\sqrt{5}}\)
    \(-2-\sqrt{5}\)
    \(\frac{1-\sqrt{5}}{16}\)

    Провери одговоре Не знам

  • 13.      

    Број реалиних решења једначине \(f(x)+f(f(x))=x\), где је \(f(x)=|x|+a\)\(a>0\) једнак је:

    \(0\)
    \(2\)
    \(4\)
    \(1\)
    \(3\)

    Провери одговоре Не знам

  • 14.      

    Једначина \(\sqrt{1-x}=-x\):

    има више од два решења
    има тачно једно решење и оно је негативно
    има тачно два решења
    има тачно једно решење и оно је позитивно
    нема решења

    Провери одговоре Не знам

  • 15.      

    Вредност израза \(\left ( \frac{\left ( -0,4 \right )^{3}}{\left ( -0,8 \right )^{3}}- \frac{\left ( -0,8 \right )^{3}}{\left ( -0,4 \right )^{3}} \right ):\left ( \frac{3}{4}-3 \right )\) једнака је:

    \(\frac{9}{2} \) 
    \(\frac{4}{9} \) 
    \(\frac{63}{8} \)
    \(\frac{7}{9} \) 
    \(\frac{7}{2} \) 

    Провери одговоре Не знам

  • 16.      

    Ако график функције \(y=\frac{1}{x^2-ax+2}\) садржи тачку \(M\left( -3, \frac{1}{19} \right)\) онда је највећа вредност функције једнака:

    \(\frac{1}{2}\)
    \(\frac{3}{22}\)
    \(\frac{9}{2}\)
    \(4\)
    \(\frac{3}{10}\)

    Провери одговоре Не знам

  • 17.      

    Четири младића и четири девојке иду у биоскоп. Имају карте за места у истом реду који има тачно 8 седишта. На колико начина се могу распоредити ако је познато да две од девојака не желе да седа ни на првом ни на последњем месту. 
     

     

    \(2\cdot 6!\)  
    \(\frac{(8!)^2}{2}\)
    \(\frac{8!}{4!}\)
    \(15\cdot 6!\)
    \(30\cdot 6!\)

    Провери одговоре Не знам

  • 18.      

    Ако права \(y = 2x + p\) у равни \(Oxy ( p \in R )\) додирује параболу \(y = x^2 − x\), онда \(p\) припада интервалу:

     

    \([−10, −8)\)  
    \([−8, −4)\)
    \([−4, −2)\)   
    \([2, 4]\)
    \([−2, 2)\)  

    Провери одговоре Не знам

  • 19.      

    Број парова \((p,q), p,q \in R\) таквих да је полином \(x^4+px^2+q\) дељив полиномом \(x^2+px+q\), једнак је:

    \(1\)
    \(5\)
    \(2\)
    \(4\)
    \(0\)

    Провери одговоре Не знам

  • 20.      

    Унутрашљи углови конвексног петоугла односе се као 3 : 4 : 5 : 7 : 8. Разлика највећег и најмањег од тих углова је:

    40°
    120°
    80°
    60°
    100°

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време