Задаци

  • 1.      

    Целих бројева који припадају скупу решења неједначине \(\frac{3x-16}{-x^2+11x-28} \geq 1\) има:

    \(  2    \)
    \(     5    \)   
    \( 3 \)
    \(   4\)
    бесконачно много 

    Провери одговоре Не знам

  • 2.      

    Производ свих решења једначине \(\sqrt{3x-1}+\sqrt{6-x}=5\) једнак је:

    \(   \frac{45}{2}     \)
    \(        5\)  
    \( \frac{75}{4}      \)
    \(    20  \)  
    \(  \frac{15}{4}      \)

    Провери одговоре Не знам

  • 3.      

    Разлика највећег и намањег решења једначине \(\sqrt{x-3}+\sqrt{8-x}=3\) једнак је:

    \(2\)
    \(5 \)  
    \( 1 \)  
    \(3\)
    \(4\)  

    Провери одговоре Не знам

  • 4.      

      Производ свих решења једначине \(4^{x-\frac{1}{x}}+16^{x-\frac{1}{x}}=72\) једнак је:

     

    \(-1\)
     \(-6\)
     \(1\)  
    \(4\)
    \(6      \)

    Провери одговоре Не знам

  • 5.      

    Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+10\sqrt{3}x+6\sqrt{3}=0\) тада је \(\frac{1}{x_1}+\frac{1}{x_2}\) једнако:

    \( -\frac{5}{3}     \)
    \(            \frac{5}{3}          \)  
    \(    -\frac{3}{5}   \)  
    \(  -\frac{\sqrt{3}}{6}     \)
    \(   \frac{3}{5}     \)

    Провери одговоре Не знам

  • 6.      

     Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+5x-9=0\), тада је \(x^3_1+x^3_2\) једнако:

    \(10\)  
    \(-260\)
    \(-10\)        
    \(170\)
     \(-170\)

    Провери одговоре Не знам

  • 7.      

    У троуглу су странице \(b=3\sqrt{3}\) и \(c= 6\) , а најмањи угао \(\alpha=\frac{\pi}{6} \). Ако је трећа страница \(a < b\) , тада је \(a\) једнако:

    \(     \frac{3}{2}    \)  
    \(   \frac{5}{2}    \)
    \( 3 \)
    \(    2     \) 
    \(  2\sqrt{3}    \)

    Провери одговоре Не знам

  • 8.      

    Дате су тачке \(A(1,2), B(4,-7), C(6,-3).\) Ако је \(D(x_0, y_0)\) подножје висине спуштене из тачке \(C\) на страницу \(AB\), троугла \(ABC\) тада је \(x_0\cdot y_0\) једнако:

     

    \( 16\)
    \(-6 \)        
    \(4\)
    \(-12\)
     \( 8\)

    Провери одговоре Не знам

  • 9.      


     Број решења једначине \(2\sin^2x=\sin2x\) на интервалу \([-\pi,\pi]\) једнак је

    4
    5
    6
    3      

    Провери одговоре Не знам

  • 10.      

    Ако је \((x ,y), x, y\in R, 0 < x \leq y\), решење система једначина \(x^2+y^2=51, xy=12\) тада је \(y - x^3\) једнако:

    \(  1       \)
    \(    -\sqrt{3}        \)  
    \( \sqrt{3}  \)
    \(     2\sqrt{3}       \)  
    \(   -1    \)

    Провери одговоре Не знам

  • 11.      

    Тангенте постављене из тачке \(A(2,4)\) на кружницу \(x^2+y^2=2\) секу осу \(Oy\) у тачкама \(B\) и \(C\). Површина троугла \(ABC\) једнака је:

     

     \(8\)
    \(10\)  
    \(12\)
    \(16\)
    \(6 \)       

    Провери одговоре Не знам

  • 12.      

     Ако су странице троугла \(a=1, b=3\sqrt{2}, c=5\), тада је највећи угао једнак:

     

     \(\frac{2\pi}{3}\)
    \(\frac{3\pi}{4} \) 
    \(\frac{5\pi}{6}   \) 
    \(\frac{\pi}{2}\)
    \(\frac{5\pi}{12}\)        

    Провери одговоре Не знам

  • 13.      

    Ако је \(\sin\alpha=\frac{15}{17}, \frac{\pi}{2}<\alpha<\pi\), тада је \(\cos(\frac{\pi}{4}-\alpha)\) једнако:

     
     

    \(\frac{23\sqrt{2}}{34}\)  
    \(\frac{7\sqrt{2}}{34}\) 
    \(-\frac{15\sqrt{2}}{34}\)  
    \(-\frac{23\sqrt{2}}{34}\)    
    \(-\frac{7\sqrt{2}}{34} \)  

    Провери одговоре Не знам

  • 14.      

    Ако је запремина правог ваљка \(V=6\pi\), а површина његовог омотача \(M=4\pi\), тада је однос полупречника основе \(r \) и висине \(H, \frac{r}{H}\) једнак: 

    \(2,5\)
     \(4\)  
    \(3 \)
    \(2\)  
    \(4,5\)

    Провери одговоре Не знам

  • 15.      

    Различитих петоцифрених бројева, у чијем се запису користе две цифре 2 и по једна цифра 3, 4 и 5, има:

    \(     240    \)   
    \(  30    \)
    \(    120     \)
    \( 60 \)
    \(   40 \)

    Провери одговоре Не знам

  • 16.      

    Шестоцифрених бројева дељивих са 2, код којих су све цифре различите, направљених од цифара 0 , 1, 2 , 3 , 4 , 5 има:

    \(            288      \)  
    \(    216  \)  
    \(   120   \)
    \( 312   \)
    \(  360    \)

    Провери одговоре Не знам

  • 17.      

    Производ свих реалних решења једначине \(|x|+|x-1|=x+\frac{1}{2}\) једнак је:

     

    \(\frac{3}{2} \)   
    \(\frac{5}{6}\)  
    \(\frac{3}{4}\)  
    \(\frac{1}{2}\)  
    \(\frac{1}{8}\)        

    Провери одговоре Не знам

  • 18.      

     Ако је \((a,b]\cup(c,d]\) решење неједначине \(\frac{x^2+x-28}{x^2-4x-5}\geq2\), тада је \(a+b+c+d\) једнако:

     

    \(14\)  
    \(16\)
    \(12\)    
    \(13\)
    \(15\)  

    Провери одговоре Не знам

  • 19.      

     Ако је полином \(P(x)=x^{2014}+x^{2013}+ax+b\) дељив полиномом \(Q(x)=x^2-1\), тада је \(2a-5b\) једнако:


     

    \(3\)
    \(-7\)
    \(7\)
    \(-12\) 
    \(-3\)  

    Провери одговоре Не знам

  • 20.      

    Производ свих реалних решења једначине \(3|x|=12-x\) једнак је:

    \(    6\) 
    \(  -12     \)
    \(    3  \) 
    \(   -6\)
    \(  -18     \)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време