Пријемни испит
Број поена
Саобраћајни, Технички, Машински и Факултет организационих наука
Дата је геометријска прогресија \(a_1, a_2, a_3, . . . \). Ако је \(a_1+a_7 =\frac{65}{16}\) и \(a_2+a_8 =\frac{65}{32}\) , онда је \(\frac{ a_3}{ a_{13}} \) једнако:
Угао између веће основице и крака једнакокраког трапеза једнак је \(60^{o}\) . Ако је дужина те основице једнака \(9 cm ,\) а крака \(4 cm ,\) површина трапеза (у \(cm^2\) ) једнака је:
Тачка \(A\left ( 5,\frac{12}{5} \right )\) и жиже елипсе \(\frac{x^2}{169}+\frac{y^2}{144}=1\) су темена троугла \(ABC\) . Обим датог троугла је:
Збир свих девет чланова аритметичке прогресије је за \(164\) већи од збира првих пет чланова те прогресије. Ако је девети члан за \(14\) мањи од двоструке вредности шестог члана, онда је производ прва два члана дате прогресије једнак:
Ако за комплексан број \(z\) важи \(\left | z-3 \right |=\left | z-3+2i \right |\) и \(\left | z-2i \right |=\left | z+4-2i \right | ,\) где је \(i^{2}=-1 ,\) тада је:
Решење једначине \(log_2(3x-7)=5\) je:
Ако се број страница конвексног \(n\)-тоугла повећа зa \(7\), број дијагонала му се повећа за \(119\). Број \(n\) износи:
Ако је \((x ,y), x, y\in R, 0 < x \leq y\), решење система једначина \(x^2+y^2=51, xy=12\) тада је \(y - x^3\) једнако:
Ако је у аритметичкој прогресији први члан \(a_1=16\), а збир првих девет чланова \(S_9=0\), тада је збир првих \(19\) чланова \(S_{19}\):
Израз \((a^{-1}+b^{-1})^{-1}:(b^{-1}-a^{-1})^{-1}, (a,b\neq0, a\neq b)\) идентички је једнак изразу:
Ако 12 радника, радећи 5 дана, зараде 125000 динара, 15 радника за 6 дана заради:
Производ свих реалних решења једначине \(|x|+|x-1|=x+\frac{1}{2}\) једнак је:
Број свих петоцифрених бројева дељивих са 5, који имају тачно једну непарну цифру, једнак је:
За \(a > 0\), \(b > 0\) и \(a\neq b\) , израз \(\left ( \frac{1}{\sqrt{a}-\sqrt{b}}-\frac{2\sqrt{a}}{\sqrt{a^{3}}+\sqrt{b^{3}}}:\frac{\sqrt{a}-\sqrt{b}}{a-\sqrt{ab}+b} \right )\cdot \left ( a+b+2\sqrt{ab} \right ) \) идентички је једнак изразу:
Производ свих решења једначине \(4^{x-\frac{1}{x}}+16^{x-\frac{1}{x}}=72\) једнак је:
Скуп свих решења неједначине \(\frac{|x-2|}{x^2-3x+2}\geq 2\) у скупу реалних бројева je:
Из тачке \(A(3,4) \) постављена је нормала \(n\) на праву \(p:4x-2y+1=0\) . Ако се праве \(p \) и \(n\) секу у тачки \(S(x_S,y_S)\) , тада је \(x_S\cdot y_S\) једнако:
Ако је \( a=\log_{\sqrt{2}}\sqrt[3]{64}-\sqrt[3]{3}^{\log_{\sqrt{3}}27}\), онда је вредност израза \((a+9)^{a+\frac{9}{2}}\) једнака:
Производ свих решења једначине \(\sqrt{3x-1}+\sqrt{6-x}=5\) једнак је:
Разлика највећег и намањег решења једначине \(\sqrt{x-3}+\sqrt{8-x}=3\) једнак је:
Тренутно нема података за приказ графикона!
Попуните образац за слање ваших резултата вашем наставнику.