Задаци

  • 1.      

      Производ свих решења једначине \(4^{x-\frac{1}{x}}+16^{x-\frac{1}{x}}=72\) једнак је:

     

     \(-6\)
     \(1\)  
    \(-1\)
    \(6      \)
    \(4\)

    Провери одговоре Не знам

  • 2.      

    Скуп свих решења неједначине \(2x+|x-1|<2\) у скупу реалних бројева је:

    празан скуп   
    \( (-\infty, -1) \) 
    \( (1,2) \) 
    \( (-\infty, 1) \)
    \( (1, +\infty) \) 

    Провери одговоре Не знам

  • 3.      

    Вредност израза \(\frac{\cos 100^o+\sin 50^o}{\sin 200^o}\) једнака је:

    \(-\sqrt{2} \)
    \(\sqrt{3} \)
    \(-\sqrt{3} \)
    \(\sqrt{2} \)
    \(-2 \)

    Провери одговоре Не знам

  • 4.      

     Реално решење једначине \(\sqrt{3x+2}-\sqrt{2x-2}=\sqrt{x} \) припада интервалу:

    \(\left (0,1 \right ]\)
    \(\left ( -\infty \right ]\)
    \((3,+ \infty) \)
    \(\left (2,3 \right ]\)
    \(\left (1,2 \right ]\)

    Провери одговоре Не знам

  • 5.      

    Број реалних решења једначине \( \log \sqrt{x-2}+3\log \sqrt{x+2}=\frac{1}{2}+\log \sqrt{x^{2}-4}\)  је:

    \(1\)
    \(2\)
    \(4\)    
    \(3\)
    \(0\)

    Провери одговоре Не знам

  • 6.      

     Угао између веће основице и крака једнакокраког трапеза једнак је \(60^{o}\) . Ако је дужина те основице једнака \(9 cm ,\) а крака \(4 cm ,\) површина трапеза (у \(cm^2\) ) једнака је:

    \(16\)
    \(7\sqrt{3} \)
    \(14\sqrt{3} \)
    \( 24\sqrt{3} \)
    \(18 \)

    Провери одговоре Не знам

  • 7.      

    Десетоцифрених бројева чије су све цифре међусобно различите и који су дељиви са 5 има:

    \(10\cdot 8! \)
    \(17 \cdot 8! \)
    \(2\cdot 10! \)
    \(2\cdot 9!\)
    \(11\cdot 9! \)

    Провери одговоре Не знам

  • 8.      

     Ако је \(a=225^{\frac{1}{2}-\log_{15}\sqrt[4]{9}}\) онда је \((a-4)^{a}\) једнако:

    \(-1 \)
    [math]4 [/math
    \(64 \)
    \(0 \)
    \(1 \)

    Провери одговоре Не знам

  • 9.      

     Ако су странице троугла \(a=1, b=3\sqrt{2}, c=5\), тада је највећи угао једнак:

     

    \(\frac{3\pi}{4} \) 
    \(\frac{5\pi}{6}   \) 
    \(\frac{5\pi}{12}\)        
    \(\frac{\pi}{2}\)
     \(\frac{2\pi}{3}\)

    Провери одговоре Не знам

  • 10.      

     Нека је \(f(x)=\frac{1-x}{1+x}\) за \(x\neq -1\) и \(g(x)=\frac{1}{x^2+1} .\) Тада је вредност једнака:

    \(-1 \)
    \(2 \)
    \(0 \)
    \(1 \)
    \(-2 \)

    Провери одговоре Не знам

  • 11.      

    Једначина праве која пролази кроз тачке \(A(-1,1)\) и \(B(1,4)\) гласи:

    \( x – 2y + 5 = 0 \) 
    \( 2x - 3y + 5 = 0 \) 
    \( x – y + 2 = 0 \) 
    \( 3x – 2y + 5 = 0 \)
    \( 3x + 2y - 5 = 0 \) 

    Провери одговоре Не знам

  • 12.      

    Целих бројева \(x\) за које важи неједналост  \(x+1>\sqrt{5-x}\)  има:
     

     

    \(4\)  
    \(1\)     
    \(2\)
    \(5\)  
    \(3\)  

    Провери одговоре Не знам

  • 13.      

     Ако је збир првих једанаест чланова геометријске прогресије \(S_{11}= 6141\), a количник \(q = 2\), први члан \(a_1\) је:

     

    \(5\)  
    \(1\)
    \(4\)  
    \(7\)      
    \(3\)

    Провери одговоре Не знам

  • 14.      

    Основе правог ваљка и праве купе су кругови полупречника \(12 cm\). Ако су запремине ваљка и купе једнаке, а висина купе за \(6 cm\) дужа од висине ваљка, онда је однос површина ваљка и купе једнак:

    \(3 : 2\)
    \(6 : 5\)
    \(8 : 7\)
    \(4 : 3\)  
    \(10:9\)

    Провери одговоре Не знам

  • 15.      

     Угао између правих \( p : x - 3y + 5 = 0\) и \(q : 2x - y - 3 = 0\) je:

    \(60^{\circ}\)
    \(30^{\circ}\)  
    \(90^{\circ}\)
    \(45^{\circ}\) 
     \(120^{\circ}\)   

    Провери одговоре Не знам

  • 16.      

    Комплексан број  \(\frac{2\cdot i^{2013}}{1+i}\) једнак је:

    \(    i  \)  
    \(   -1+i     \)
    \(  1-i   \)
    \(  1+i \)
    \(   -1-i    \)  

    Провери одговоре Не знам

  • 17.      

    У троуглу \(ABC\) је \(AB = 6 cm \), \(AC = 5 cm\) и \(AD = 4 cm\) , где је \(D\) подножје висине из темена \(A .\) Дужина полупречника описане кружнице троугла \(ABC \)\(cm\) ) једнака је:

    \(\frac{15}{4}cm \)
    \(\frac{17}{4}cm \)
    \(\frac{7}{2}cm \)
    \(\frac{9}{2}cm \)
    \(17 \)

    Провери одговоре Не знам

  • 18.      

    Ако је \(J=ab+\frac{a^2b+ab^2}{a^2-b^2}(\frac{a^2}{b}-\frac{b^2}{a}); a=1,75 ; b=1,25\) тада је \(J\) једнако:

    \(   \frac{1}{4}          \)
    \(    \frac{37}{8}      \)  
    \(    4   \)  
    \(  9     \)
    \(  1      \)

    Провери одговоре Не знам

  • 19.      

     Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+5x-9=0\), тада је \(x^3_1+x^3_2\) једнако:

    \(170\)
    \(-10\)        
     \(-170\)
    \(10\)  
    \(-260\)

    Провери одговоре Не знам

  • 20.      

    Збир прва три члана аритметичког низа је \(21\), а разлика трећег и првог члана је \(6\). Осми члан тог низа једнак је:

     

    \(26\)
    \(24\)        
    \(25\)
    \(28\)    
    \( 27\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време