Пријемни испит
Број поена
Саобраћајни, Технички, Машински и Факултет организационих наука
Биномни коефицијент четвртог члана у развоју \(\left (\sqrt[5]{11}+\sqrt[11]{5} \right )^{n}\) је \(671\) пута већи од биномног коефицијента трећег члана. Број свих чланова у овом развоју који нису цели бројеви једнак је:
Нека је \(f(x)=\frac{1-x}{1+x}\) за \(x\neq -1\) и \(g(x)=\frac{1}{x^2+1} .\) Тада је вредност једнака:
Производ свих реалних решења једначине \( \sqrt{10+x}-\sqrt{5-x}=\sqrt{1+x}\) једнак је:
Број решења једначине \(2\sin^2x=\sin2x\) на интервалу \([-\pi,\pi]\) једнак је
Вредност израза \(((\frac{7}{9}-\frac{7}{9}):1,25+(\frac{6}{7}-\frac{17}{28}):(0,358-0,108))\cdot1,6 - \frac{19}{25}\) je:
У троуглу \(ABC\) је \(AB = 6 cm \), \(AC = 5 cm\) и \(AD = 4 cm\) , где је \(D\) подножје висине из темена \(A .\) Дужина полупречника описане кружнице троугла \(ABC \)(у \(cm\) ) једнака је:
Пети члан аритметичке прогресије је \(a_5 =16\) , а једенаести \(a_{11}=31\) . Збир првих \(17 \) чланова \(S_{17}\) je :
Производ свих решења једначине \(\sqrt{3x-1}+\sqrt{6-x}=5\) једнак је:
Ако се цена артикла најпре повећа за \(30\%\) а онда смањи за \(20\%\) коначна цена артикла у односу на почетну цену је:
Нека је \(f(x) = x^2 + 1\) и \(g(x) = 3x - 2\). Тада је вредност \(f(g^{-1} (4)) - g^{-1} (f(3))\) једнака:
Нека је \(S\) скуп свих целобројних вредности параметра \(m\) за које једначина \(x^2-(m-3)x+5+m=0\) има оба решења негативна. Број елемената скупа \(S\) је:
Број различитих решења једначине \(1 + \sin 2x - 2\sin x = \cos 2x\) на интервалу \([0,3\pi]\) је:
Ако је \(\sin\alpha=\frac{15}{17}, \frac{\pi}{2}<\alpha<\pi\), тада је \(\cos(\frac{\pi}{4}-\alpha)\) једнако:
Ако је права \(p : y = 2x + n\) тангента кружнице \(k : x^2 + y^2 = 5\), тада је \(n\) једнако:
Скуп свих решења неједначине \(2x+|x-1|<2\) у скупу реалних бројева је:
Различитих петоцифрених бројева, у чијем се запису користе две цифре 2 и по једна цифра 3, 4 и 5, има:
Ако је \(z=1+i \), тада је \(z^4\) :
У развоју \(\left ( \sqrt[4]{3}+\sqrt[3]{2} \right )^{2012}\) број чланова који су цели бројеви једнак је:
Ако је полином \(P(x)=x^{2014}+x^{2013}+ax+b\) дељив полиномом \(Q(x)=x^2-1\), тада је \(2a-5b\) једнако:
Збир свих девет чланова аритметичке прогресије је за \(164\) већи од збира првих пет чланова те прогресије. Ако је девети члан за \(14\) мањи од двоструке вредности шестог члана, онда је производ прва два члана дате прогресије једнак:
Тренутно нема података за приказ графикона!
Попуните образац за слање ваших резултата вашем наставнику.