Пријемни испит
Број поена
Саобраћајни, Технички, Машински и Факултет организационих наука
Број свих решења једначине \(log_3(x+1)-log_3(3x-1)+log_3(5x-4)=2log_3(x-2)\) је:
Целих бројева \(x\) за које важи неједналост \(x+1>\sqrt{5-x}\) има:
Скуп свих решења неједначине \(3\cdot 81^{x}+2\cdot 16^{x}\leqslant 5\cdot 36^{x}\) је:
Ако је \(J=\frac{a+b}{a-b}\frac{a-b}{a+b}, a=\sqrt{3}, b=\sqrt{2} \) тада је \(J\) једнако:
Број решења једначине \(2\sin^2x=\sin2x\) на интервалу \([-\pi,\pi]\) једнак је
Нека је \(f(x)=\frac{1-x}{1+x}\) за \(x\neq -1\) и \(g(x)=\frac{1}{x^2+1} .\) Тада је вредност једнака:
Комплексни број \(\frac{11+2i}{3-4i}\) једнак је:
Вредност израза \(((\frac{7}{9}-\frac{7}{9}):1,25+(\frac{6}{7}-\frac{17}{28}):(0,358-0,108))\cdot1,6 - \frac{19}{25}\) je:
Угао између веће основице и крака једнакокраког трапеза једнак је \(60^{o}\) . Ако је дужина те основице једнака \(9 cm ,\) а крака \(4 cm ,\) површина трапеза (у \(cm^2\) ) једнака је:
Ако је \(log_23=a \), тада је \(log_64\) једнако:
Ако је \( a=\log_{\sqrt{2}}\sqrt[3]{64}-\sqrt[3]{3}^{\log_{\sqrt{3}}27}\), онда је вредност израза \((a+9)^{a+\frac{9}{2}}\) једнака:
Угао између правих \( p : x - 3y + 5 = 0\) и \(q : 2x - y - 3 = 0\) je:
Збир свих девет чланова аритметичке прогресије је за \(164\) већи од збира првих пет чланова те прогресије. Ако је девети члан за \(14\) мањи од двоструке вредности шестог члана, онда је производ прва два члана дате прогресије једнак:
Број свих петоцифрених бројева дељивих са 5, који имају тачно једну непарну цифру, једнак је:
Производ свих реалних решења једначине \(|x|+|x-1|=x+\frac{1}{2}\) једнак је:
Скуп свих решења неједначине \(\frac{x-1}{x-3}<\frac{x+8}{x+4}\) je
Ако бочна ивица правилне четворостране пирамиде има дужину \(6cm\) и заклапа угао \(45^{\circ}\) са равни основе, запремина пирамиде је:
Број реалних решења једначине \( \log \sqrt{x-2}+3\log \sqrt{x+2}=\frac{1}{2}+\log \sqrt{x^{2}-4}\) је:
Укупна цена две књиге износи \(2600\) . Уколико би се цена прве књиге увећала за \(150\) динара и цена друге умањила за \(150\) динара, тада би цена друге износила \(30\%\) цене прве књиге. Разлика цене прве и друге књиге (у динарима) једнака је:
Збир квадрата свих решења једначине \( |x + 4| - |x - 3| = x\) je:
Тренутно нема података за приказ графикона!
Попуните образац за слање ваших резултата вашем наставнику.