Задаци

  • 1.      

    Из тачке \(A(3,4) \) постављена је нормала \(n\) на праву \(p:4x-2y+1=0\) . Ако се праве \(p \) и \(n\) секу у тачки \(S(x_S,y_S)\) , тада је \(x_S\cdot y_S\) једнако:

    \(    \frac{39}{2}   \)  
    \(  7    \)
    \(  9  \)
    \(   \frac{5}{2}   \)  
    \(   \frac{38}{9}   \)

    Провери одговоре Не знам

  • 2.      

    Сва решења једначине \(3\cdot16^x + 2\cdot 81^x =5\cdot36^x\) припадају интервалу:

     

    \((3,5)\)    
    \((-3,-1)\)     
    \((1,3)\)  
    \((-1,1)\) 
    \((5,7)\)

    Провери одговоре Не знам

  • 3.      

    Комплексни број \(\frac{11+2i}{3-4i}\) једнак је:

     

    \(1-2i\)  
    \(1+2i\)
    \(2-i\)
     \(1-i\)
    \(2+i\)      

    Провери одговоре Не знам

  • 4.      

    Израз \((a^{-1}+b^{-1})^{-1}:(b^{-1}-a^{-1})^{-1}, (a,b\neq0, a\neq b)\) идентички је једнак изразу:

    \( a^2b^2 \) 
    \( 1 \) 
    \( \frac{a-b}{a-b} \) 
    \( \frac{a+b}{a-b} \)
    \( \frac{a-b}{a+b} \) 

    Провери одговоре Не знам

  • 5.      

    Ако је \(\sin\alpha=\frac{15}{17}, \frac{\pi}{2}<\alpha<\pi\), тада је \(\cos(\frac{\pi}{4}-\alpha)\) једнако:

     
     

    \(-\frac{23\sqrt{2}}{34}\)    
    \(\frac{7\sqrt{2}}{34}\) 
    \(-\frac{7\sqrt{2}}{34} \)  
    \(-\frac{15\sqrt{2}}{34}\)  
    \(\frac{23\sqrt{2}}{34}\)  

    Провери одговоре Не знам

  • 6.      

    Број различитих решења једначине \(1 + \sin 2x - 2\sin x = \cos 2x\) на интервалу \([0,3\pi]\) је:

    \(    2     \)  
    \(  3    \)
    \(     5    \)  
    \(   4\)
    \( 6 \)

    Провери одговоре Не знам

  • 7.      

    Израз \(\cos(\alpha + \beta)\cos(\alpha - \beta)- \sin(\alpha + \beta)\sin(\alpha - \beta)\) идентички је једнак изразу:

     

    \(\cos\alpha\)
     \(1+ \sin(2\alpha - 2\beta)\)
    \(\cos2\alpha\) 
     \(1\)
    \(\sin2\alpha\)     

    Провери одговоре Не знам

  • 8.      

     Ако је \((a,b]\cup(c,d]\) решење неједначине \(\frac{x^2+x-28}{x^2-4x-5}\geq2\), тада је \(a+b+c+d\) једнако:

     

    \(15\)  
    \(12\)    
    \(14\)  
    \(16\)
    \(13\)

    Провери одговоре Не знам

  • 9.      

    Ако је збир свих решења једначине \(1+\log_{2}(2^{x}-1)=\log_{2^{x}-1}64 ,\) онда је вредност \(2a+3\) једнака:

    [math]32 [/math
    \(45 \)
    \(15 \)
    \(30 \)
    \(64 \)

    Провери одговоре Не знам

  • 10.      

    Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+10\sqrt{3}x+6\sqrt{3}=0\) тада је \(\frac{1}{x_1}+\frac{1}{x_2}\) једнако:

    \(   \frac{3}{5}     \)
    \(            \frac{5}{3}          \)  
    \(  -\frac{\sqrt{3}}{6}     \)
    \(    -\frac{3}{5}   \)  
    \( -\frac{5}{3}     \)

    Провери одговоре Не знам

  • 11.      

    Десетоцифрених бројева чије су све цифре међусобно различите и који су дељиви са 5 има:

    \(10\cdot 8! \)
    \(11\cdot 9! \)
    \(2\cdot 9!\)
    \(2\cdot 10! \)
    \(17 \cdot 8! \)

    Провери одговоре Не знам

  • 12.      

     У развоју \(\left ( \sqrt{3}+\sqrt[3]{2} \right )^{n}\), где је \(n\in \mathbb{N}\), биномни коефицијент трећег члана је 1005 пута већи од биномног коефицијента другог члана. Број чланова у том развоју који су рационални бројеви је:

    \(1006\)
    \(334\)
    \(1005\) 
    \(336\)
    \(335\)

    Провери одговоре Не знам

  • 13.      

    Ако за комплексан број \(z\) важи \(\left | z-3 \right |=\left | z-3+2i \right |\) и \(\left | z-2i \right |=\left | z+4-2i \right | ,\) где је \(i^{2}=-1 ,\) тада је:

    \(\left | z \right |=2 \)
    \(\left | z \right |=3 \)
    \(\left | z \right |=\sqrt{5} \)
    \(\left | z \right |=2\sqrt{5} \)
    \(\left | z \right |=5 \)

    Провери одговоре Не знам

  • 14.      

    Нека је \(f(x) = x^2 + 1\) и \(g(x) = 3x - 2\). Тада је вредност \(f(g^{-1} (4)) - g^{-1} (f(3))\) једнака:

     

     

    \(-3\)  
    \(1\)
    \(3\)  
    \(-1\)  
    \(0\)        

    Провери одговоре Не знам

  • 15.      

     Ако су странице троугла \(a=1, b=3\sqrt{2}, c=5\), тада је највећи угао једнак:

     

    \(\frac{5\pi}{12}\)        
    \(\frac{5\pi}{6}   \) 
     \(\frac{2\pi}{3}\)
    \(\frac{\pi}{2}\)
    \(\frac{3\pi}{4} \) 

    Провери одговоре Не знам

  • 16.      

    Збир квадрата свих решења једначине \( |x + 4| - |x - 3| = x\) je:


     
     

    \(99\)
    \(41\)       
    \(50\)
    \(59\)
     \(100\)

    Провери одговоре Не знам

  • 17.      

    Скуп свих решења неједначине \(2x+|x-1|<2\) у скупу реалних бројева је:

    \( (-\infty, -1) \) 
    празан скуп   
    \( (1,2) \) 
    \( (-\infty, 1) \)
    \( (1, +\infty) \) 

    Провери одговоре Не знам

  • 18.      

    Тачка \(A\left ( 5,\frac{12}{5} \right )\) и жиже елипсе \(\frac{x^2}{169}+\frac{y^2}{144}=1\) су темена троугла \(ABC\) . Обим датог троугла је:

    \(30 \)
    \(34 \)
    \(32 \)
    \(36 \)
    \(28 \)

    Провери одговоре Не знам

  • 19.      

    Збир свих решења једначине\( \sqrt{2x^2 - x + 3} = x +1\) je:

     

    \(4\)  
    \(2\)  
    \(3\)
    \(-1\)    
    \(5\)

    Провери одговоре Не знам

  • 20.      

    Нека је \(a_n\) аритметички низ, \(a_1=4 \). Ако је збир првих пет чланова тог низа \(90,\) тада је \(a_{15}\) једнако:

    \( 102  \)
    \(    108 \)  
    \(   106   \)
    \(   100      \)  
    \(  104    \)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време