Задаци

  • 1.      

    Скуп свих решења неједначине \(2x+|x-1|<2\) у скупу реалних бројева је:

    \( (-\infty, 1) \)
    \( (1, +\infty) \) 
    \( (-\infty, -1) \) 
    празан скуп   
    \( (1,2) \) 

    Провери одговоре Не знам

  • 2.      

    Збир највећег негативног и најмањег позитивног решења неједначине \(\cos ^{4}x-\sin ^{4}x=1+\sin x\) је:

    \(-\frac{\pi }{6}\)
    \(\frac{\pi }{6}\)
    \(-\pi\)
    \(\pi\)
    \(\frac{5\pi }{6}\)

    Провери одговоре Не знам

  • 3.      

     Нека је \(f(x)=\frac{1-x}{1+x}\) за \(x\neq -1\) и \(g(x)=\frac{1}{x^2+1} .\) Тада је вредност једнака:

    \(1 \)
    \(0 \)
    \(2 \)
    \(-2 \)
    \(-1 \)

    Провери одговоре Не знам

  • 4.      

    Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+10\sqrt{3}x+6\sqrt{3}=0\) тада је \(\frac{1}{x_1}+\frac{1}{x_2}\) једнако:

    \(  -\frac{\sqrt{3}}{6}     \)
    \(    -\frac{3}{5}   \)  
    \( -\frac{5}{3}     \)
    \(            \frac{5}{3}          \)  
    \(   \frac{3}{5}     \)

    Провери одговоре Не знам

  • 5.      

    Ако је првобитна цена књиге од \(500\) динара смањена најпре за \(10\%\), а затим за \(20\%\), нова цена књиге (у динарима) је:

     

     \(380\)
    \(360\)
    \(350\)
    \(470\)      
    \(340\)  

    Провери одговоре Не знам

  • 6.      

    Дате су функције \(f_1(x)=\frac{\sqrt{x^4+2x^2+1}}{x^2+1}, f_2(x)=sin^2x+cos^2x, f_3(x)=tgx\cdot ctgx\). Тачан је исказ:
     

     

    \(f_3=f_1\neq f_2\)  
    \(f_1=f_2\neq f_3\)  
    \(f_1\neq f_2\neq f_3\)    
    \(f_1=f_2=f_3\)    
     \(f_1\neq f_2=f_3\)    

    Провери одговоре Не знам

  • 7.      

    Ако 12 радника, радећи 5 дана, зараде 125000 динара, 15 радника за 6 дана заради:

    237500 дин. 
    154500 дин. 
     187500 дин.
    217500 дин.   
     163500 дин. 

    Провери одговоре Не знам

  • 8.      

    Вредност израза \(\frac{8}{3-\sqrt{5}}-\frac{2}{2+\sqrt{5}}\) je:

    \( 1 \) 
    \( 5 \)
    \( 2\sqrt{5} \) 
    \( \sqrt{5} \) 
    \( 10 \)

    Провери одговоре Не знам

  • 9.      

    На колико начина се од 6 девојака и  7 младића може саставити екипа од 5 чланова, тако да у екипи буду 3 девојке и 2 младића?

     

    \(945\)  
    \(41\)  
    \(512\)
    \(128\)    
    \(420\)

    Провери одговоре Не знам

  • 10.      

    Једначина праве која пролази кроз тачке \(A(-1,1)\) и \(B(1,4)\) гласи:

    \( 3x – 2y + 5 = 0 \)
    \( x – y + 2 = 0 \) 
    \( x – 2y + 5 = 0 \) 
    \( 2x - 3y + 5 = 0 \) 
    \( 3x + 2y - 5 = 0 \) 

    Провери одговоре Не знам

  • 11.      

    Збир свих решења једначине\( \sqrt{2x^2 - x + 3} = x +1\) je:

     

    \(4\)  
    \(5\)
    \(-1\)    
    \(2\)  
    \(3\)

    Провери одговоре Не знам

  • 12.      

     Реално решење једначине \(\sqrt{3x+2}-\sqrt{2x-2}=\sqrt{x} \) припада интервалу:

    \(\left (1,2 \right ]\)
    \(\left ( -\infty \right ]\)
    \(\left (2,3 \right ]\)
    \(\left (0,1 \right ]\)
    \((3,+ \infty) \)

    Провери одговоре Не знам

  • 13.      

    Број решења једначине \(|x-1|+2x=5\) је:

    \( 1 \)
      више од\( 4 \) 
    \( 4 \) 
    \( 2 \) 
    \( 3 \) 

    Провери одговоре Не знам

  • 14.      

    Број реалних решења једначине \( \log \sqrt{x-2}+3\log \sqrt{x+2}=\frac{1}{2}+\log \sqrt{x^{2}-4}\)  је:

    \(3\)
    \(4\)    
    \(2\)
    \(0\)
    \(1\)

    Провери одговоре Не знам

  • 15.      

    Тачка \(A\left ( 5,\frac{12}{5} \right )\) и жиже елипсе \(\frac{x^2}{169}+\frac{y^2}{144}=1\) су темена троугла \(ABC\) . Обим датог троугла је:

    \(28 \)
    \(34 \)
    \(36 \)
    \(30 \)
    \(32 \)

    Провери одговоре Не знам

  • 16.      

    Сва решења једначине \(3\cdot16^x + 2\cdot 81^x =5\cdot36^x\) припадају интервалу:

     

    \((-3,-1)\)     
    \((5,7)\)
    \((1,3)\)  
    \((-1,1)\) 
    \((3,5)\)    

    Провери одговоре Не знам

  • 17.      

    Ако је запремина правог ваљка \(V=6\pi\), а површина његовог омотача \(M=4\pi\), тада је однос полупречника основе \(r \) и висине \(H, \frac{r}{H}\) једнак: 

     \(4\)  
    \(4,5\)
    \(3 \)
    \(2\)  
    \(2,5\)

    Провери одговоре Не знам

  • 18.      

    Вредност израза \(((\frac{7}{9}-\frac{7}{9}):1,25+(\frac{6}{7}-\frac{17}{28}):(0,358-0,108))\cdot1,6 - \frac{19}{25}\) je:

    \( 1 \)
    \( 0,5 \) 
    \( 2 \) 
    \( \frac{3}{28} \) 
    \( 3 \) 

    Провери одговоре Не знам

  • 19.      

     Ако је \(a\neq -\frac{1}{2}\) и \(\left | a \right |\neq 2\) , онда је израз \(\left ( \frac{2a+1}{a+2}-\frac{4a+2}{4-a^{2}} \right ):\frac{2a+1}{a-2}+\left ( \frac{a+2}{2} \right )^{-1}\) идентички једнак изразу:

    \(\frac{а}{a+2} \)
    \(а \)
    \(1 \)
    \(2 \)
    \(\frac{1}{a+2} \)

    Провери одговоре Не знам

  • 20.      

    Нека је \(a_n\) аритметички низ, \(a_1=4 \). Ако је збир првих пет чланова тог низа \(90,\) тада је \(a_{15}\) једнако:

    \(   106   \)
    \( 102  \)
    \(   100      \)  
    \(  104    \)
    \(    108 \)  

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време