Пријемни испит
Број поена
Саобраћајни, Технички, Машински и Факултет организационих наука
Дате су функције \(f_1(x)=\frac{\sqrt{x^4+2x^2+1}}{x^2+1}, f_2(x)=sin^2x+cos^2x, f_3(x)=tgx\cdot ctgx\). Тачан је исказ:
Ако је збир првих једанаест чланова геометријске прогресије \(S_{11}= 6141\), a количник \(q = 2\), први члан \(a_1\) је:
Производ свих реалних решења једначине \( \sqrt{10+x}-\sqrt{5-x}=\sqrt{1+x}\) једнак је:
Укупна цена две књиге износи \(2600\) . Уколико би се цена прве књиге увећала за \(150\) динара и цена друге умањила за \(150\) динара, тада би цена друге износила \(30\%\) цене прве књиге. Разлика цене прве и друге књиге (у динарима) једнака је:
Број свих целобројних решења неједначине \(\frac{4x^{2}-5x-39}{x^{2}-x-12}\leqslant 3\) је:
Нека је \(S\) скуп свих целобројних вредности параметра \(m\) за које једначина \(x^2-(m-3)x+5+m=0\) има оба решења негативна. Број елемената скупа \(S\) је:
Број решења једначине \(\sqrt{7-x}=x-1\) је:
Ако је \(J=ab+\frac{a^2b+ab^2}{a^2-b^2}(\frac{a^2}{b}-\frac{b^2}{a}); a=1,75 ; b=1,25\) тада је \(J\) једнако:
Основе правог ваљка и праве купе су кругови полупречника \(12 cm\). Ако су запремине ваљка и купе једнаке, а висина купе за \(6 cm\) дужа од висине ваљка, онда је однос површина ваљка и купе једнак:
Број различитих решења једначине \(1 + \sin 2x - 2\sin x = \cos 2x\) на интервалу \([0,3\pi]\) је:
Збир свих решења једначине \(\cos ^{2}\frac{\alpha }{2}+\cos ^{2}\alpha =\frac{1}{2}\) која припадају интервалу \((\pi ,2\pi )\) једнак је:
Збир прва три члана аритметичког низа је \(21\), а разлика трећег и првог члана је \(6\). Осми члан тог низа једнак је:
Нека је \(P(x) = x^5 + ax^3 + bx\) и \(Q(x) = x^2 + 2x + 1\), где су \(a\) и \(b\) реални бројеви. Ако је полином \(P\) дељив полиномом \(Q\), тада је вредност израза \(a^2 + b^2\) једнака:
Десетоцифрених бројева чије су све цифре међусобно различите и који су дељиви са 5 има:
Ако је \((x ,y), x, y\in R, 0 < x \leq y\), решење система једначина \(x^2+y^2=51, xy=12\) тада је \(y - x^3\) једнако:
Ако 12 радника, радећи 5 дана, зараде 125000 динара, 15 радника за 6 дана заради:
Комплексни број \(\frac{11+2i}{3-4i}\) једнак је:
Ако је првобитна цена књиге од \(500\) динара смањена најпре за \(10\%\), а затим за \(20\%\), нова цена књиге (у динарима) је:
Збир свих решења једначине\( \sqrt{2x^2 - x + 3} = x +1\) je:
Једначина тангентне елипсе \(\frac{x^2}{16}+\frac{y^2}{12}=1\) која пролази кроз тачку \(A(2,3)\) гласи:
Тренутно нема података за приказ графикона!
Попуните образац за слање ваших резултата вашем наставнику.