Задаци

  • 1.      

    Дужина крака једнокраког троугла је \(5cm\), а висине која одговара основици \(3cm\). У тај троугао уписан је правоугаоник максималне површине тако да једна страница правоугаоника припада основици троугла. Обим тог правоугаоника је:

    10 cm
    8 cm
    9 cm
    11 cm
    7 cm

    Провери одговоре Не знам

  • 2.      

    Једначина тангентне елипсе \(\frac{x^2}{16}+\frac{y^2}{12}=1\) која пролази кроз тачку \(A(2,3)\) гласи:

    \( 3x+ 2y – 1 = 0 \) 
    \( 2x – y – 1 = 0 \) 
    \( x – 2y + 4 = 0 \) 
    \( 2x + y – 7 = 0 \) 
    \( x+ 2y – 8 = 0 \)

    Провери одговоре Не знам

  • 3.      

    Израз \((a^{-1}+b^{-1})^{-1}:(b^{-1}-a^{-1})^{-1}, (a,b\neq0, a\neq b)\) идентички је једнак изразу:

    \( \frac{a-b}{a+b} \) 
    \( \frac{a-b}{a-b} \) 
    \( a^2b^2 \) 
    \( \frac{a+b}{a-b} \)
    \( 1 \) 

    Провери одговоре Не знам

  • 4.      

     Ако је \(log_\sqrt{5}\), тада је \(log_{10}2\) једнако: 

     

    \(\frac{a+1}{2}\)     
    \(\frac{1}{a+2}\)
     \(\frac{1}{2(a+1)} \)  
    \(\frac{1}{2a+1}\)
    \(\frac{2}{a+1}\)

    Провери одговоре Не знам

  • 5.      

     Број решења једначине \( \sin(x-\frac{\pi}{3})=\frac{1}{2}\) у интервалу \([-2\pi, 2\pi]\) je:

     

    \(5\)    
    \(3\)
    \(1\)
    \(2\)  
    \(4\)

    Провери одговоре Не знам

  • 6.      

    Нека је \(f(x) = x^2 + 1\) и \(g(x) = 3x - 2\). Тада је вредност \(f(g^{-1} (4)) - g^{-1} (f(3))\) једнака:

     

     

    \(1\)
    \(-3\)  
    \(0\)        
    \(3\)  
    \(-1\)  

    Провери одговоре Не знам

  • 7.      

    Производ свих реалних решења једначине \(3|x|=12-x\) једнак је:

    \(   -6\)
    \(    3  \) 
    \(    6\) 
    \(  -12     \)
    \(  -18     \)

    Провери одговоре Не знам

  • 8.      

    Површина правог ваљка је \(P = 8\pi cm^2 \), а висина му је за \(1cm\) краћа од пречника основе. Запремина ваљка је:

    \( 3\pi cm^3 \) 
    \( 5\pi cm^3 \) 
    \( \frac{80}{27}\pi cm^3 \)
    \( \frac{40}{27}\pi cm^3 \) 
    \( \frac{40}{9}\pi cm^3 \) 

    Провери одговоре Не знам

  • 9.      

    Шестоцифрених бројева дељивих са 2, код којих су све цифре различите, направљених од цифара 0 , 1, 2 , 3 , 4 , 5 има:

    \( 312   \)
    \(    216  \)  
    \(            288      \)  
    \(  360    \)
    \(   120   \)

    Провери одговоре Не знам

  • 10.      

     Ако је \((a,b]\cup(c,d]\) решење неједначине \(\frac{x^2+x-28}{x^2-4x-5}\geq2\), тада је \(a+b+c+d\) једнако:

     

    \(12\)    
    \(14\)  
    \(16\)
    \(15\)  
    \(13\)

    Провери одговоре Не знам

  • 11.      

    Збир свих решења једначине \(2^{x^2-3x}+(\frac{1}{2})^{x^2-3x-4}=17\) једнак је:

    \(    12     \)   
    \(     15    \)
    \( 6 \)
    \(  3    \)
    \(   9\)

    Провери одговоре Не знам

  • 12.      

    Ако се број страница конвексног \(n\)-тоугла повећа зa \(7\), број дијагонала му се повећа за \(119\). Број \(n\) износи:

     

     \(13\)
    \(12\)      
    \(15\)
    \(17\)
     \(14\)  

    Провери одговоре Не знам

  • 13.      

     У развоју \(\left ( \sqrt{3}+\sqrt[3]{2} \right )^{n}\), где је \(n\in \mathbb{N}\), биномни коефицијент трећег члана је 1005 пута већи од биномног коефицијента другог члана. Број чланова у том развоју који су рационални бројеви је:

    \(334\)
    \(335\)
    \(1005\) 
    \(1006\)
    \(336\)

    Провери одговоре Не знам

  • 14.      

    Број решења једначине \(\sqrt{7-x}=x-1\) је:

    више од\( 4 \) 
    \( 3 \) 
    \( 4 \) 
    \( 2 \) 
    \( 1 \)

    Провери одговоре Не знам

  • 15.      

     Ako за решења \(x_1\) и \(x_2\) једначине \(kx^2-(3k+2)x+7=0\) важи \( \frac{1}{x_1}\frac{1}{x_2}=8\), вредност параметра \(k\) припада интервалу:

    \((-20,-10)\)    
    \((10,20)\)
    \((-10,0)\)
    \((\frac{1}{2},5)\)
    \((5,10)\)    

    Провери одговоре Не знам

  • 16.      

    Ако је \(\sin\alpha=\frac{15}{17}, \frac{\pi}{2}<\alpha<\pi\), тада је \(\cos(\frac{\pi}{4}-\alpha)\) једнако:

     
     

    \(\frac{7\sqrt{2}}{34}\) 
    \(-\frac{7\sqrt{2}}{34} \)  
    \(-\frac{23\sqrt{2}}{34}\)    
    \(\frac{23\sqrt{2}}{34}\)  
    \(-\frac{15\sqrt{2}}{34}\)  

    Провери одговоре Не знам

  • 17.      


     Број решења једначине \(2\sin^2x=\sin2x\) на интервалу \([-\pi,\pi]\) једнак је

    5
    3      
    4
    6

    Провери одговоре Не знам

  • 18.      

    Збир свих девет чланова аритметичке прогресије је за \(164\) већи од збира првих пет чланова те прогресије. Ако је девети члан за \(14\) мањи од двоструке вредности шестог члана, онда је производ прва два члана дате прогресије једнак:

    \(12\)
    \(20\)
    \(16\)
    \(-12\)
    \(-16\)

    Провери одговоре Не знам

  • 19.      

    Десетоцифрених бројева чије су све цифре међусобно различите и који су дељиви са 5 има:

    \(2\cdot 9!\)
    \(10\cdot 8! \)
    \(17 \cdot 8! \)
    \(11\cdot 9! \)
    \(2\cdot 10! \)

    Провери одговоре Не знам

  • 20.      

    Дате су функције \(f_1(x)=x, f_2(x)=\sqrt{x^2}\) и \(f_3(x)=(\sqrt{x})^2 .\) Тачан је исказ:

    \( f_1 = f_2 \neq f_3    \) 
    \(  f_1 = f_2 = f_3  \)
    \(   f_1 \neq f_2 = f_3   \)
    \(   f_3 = f_1 \neq f_2   \)  
    \(  f_1\neq f_2 \neq f_3 \neq f_1 \)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време