Задаци

  • 1.      

    Израз \(\cos(\alpha + \beta)\cos(\alpha - \beta)- \sin(\alpha + \beta)\sin(\alpha - \beta)\) идентички је једнак изразу:

     

    \(\cos\alpha\)
    \(\sin2\alpha\)     
    \(\cos2\alpha\) 
     \(1+ \sin(2\alpha - 2\beta)\)
     \(1\)

    Провери одговоре Не знам

  • 2.      

    Нека је \(S\) скуп свих целобројних вредности параметра \(m\) за које једначина \(x^2-(m-3)x+5+m=0\) има оба решења негативна. Број елемената скупа \(S\) је:

     

    \(6\)  
    \(7 \)  
    \(>7\)
    \(4\)
    \(3\)    

    Провери одговоре Не знам

  • 3.      

    Збир свих девет чланова аритметичке прогресије је за \(164\) већи од збира првих пет чланова те прогресије. Ако је девети члан за \(14\) мањи од двоструке вредности шестог члана, онда је производ прва два члана дате прогресије једнак:

    \(16\)
    \(12\)
    \(20\)
    \(-12\)
    \(-16\)

    Провери одговоре Не знам

  • 4.      

    Израз \((a^{-1}+b^{-1})^{-1}:(b^{-1}-a^{-1})^{-1}, (a,b\neq0, a\neq b)\) идентички је једнак изразу:

    \( \frac{a-b}{a-b} \) 
    \( \frac{a+b}{a-b} \)
    \( a^2b^2 \) 
    \( 1 \) 
    \( \frac{a-b}{a+b} \) 

    Провери одговоре Не знам

  • 5.      

    3. Израз\( \frac{1}{a+\frac{1}{b+\frac{1}{a}}}\cdot\frac{1}{b+\frac{1}{a}}\cdot \frac{1}{b+\frac{1}{a+\frac{1}{b}}}\cdot\frac{1}{a+\frac{1}{b}}\), за оне вредности променљивих \(a\) и \(b\) за које је дефинисан, идентички је једнак изразу:

    [math]0 [math] 
     [math]a-b[math]    
    [math]ab+1[math]    
    [math]\frac{a+1}{ab}[math]
    [math]\frac{ab +1}{ab}[math]

    Провери одговоре Не знам

  • 6.      

     У развоју \(\left ( \sqrt{3}+\sqrt[3]{2} \right )^{n}\), где је \(n\in \mathbb{N}\), биномни коефицијент трећег члана је 1005 пута већи од биномног коефицијента другог члана. Број чланова у том развоју који су рационални бројеви је:

    \(335\)
    \(334\)
    \(1006\)
    \(1005\) 
    \(336\)

    Провери одговоре Не знам

  • 7.      

    Вредност израза \(\frac{8}{3-\sqrt{5}}-\frac{2}{2+\sqrt{5}}\) je:

    \( 2\sqrt{5} \) 
    \( \sqrt{5} \) 
    \( 1 \) 
    \( 10 \)
    \( 5 \)

    Провери одговоре Не знам

  • 8.      

    На сајму књига првог дана је продато \(40\%\) књига мање него другог дана, а трећег за четвртину мање него првог и другог дана заједно. Ако је прва три дана укупно продато \(10500\) књига, онда је првог дана овог сајма продато:
     

    2100 књига
    2400 књига
    2700 књига
    2250 књига
    2550 књига

    Провери одговоре Не знам

  • 9.      

    Дате су тачке \(A(1,2), B(4,-7), C(6,-3).\) Ако је \(D(x_0, y_0)\) подножје висине спуштене из тачке \(C\) на страницу \(AB\), троугла \(ABC\) тада је \(x_0\cdot y_0\) једнако:

     

    \(-6 \)        
    \(-12\)
     \( 8\)
    \(4\)
    \( 16\)

    Провери одговоре Не знам

  • 10.      

    Збир свих решења једначине \(\cos ^{2}\frac{\alpha }{2}+\cos ^{2}\alpha =\frac{1}{2}\) која припадају интервалу \((\pi ,2\pi )\) једнак је:

    \(\frac{11\pi }{2}\)
    \(\frac{13\pi }{3} \)
    \(\frac{17\pi }{6} \)
    \(\frac{11\pi }{4}\)
    \(3\pi \)

    Провери одговоре Не знам

  • 11.      

    Површина правог ваљка је \(P = 8\pi cm^2 \), а висина му је за \(1cm\) краћа од пречника основе. Запремина ваљка је:

    \( 3\pi cm^3 \) 
    \( \frac{40}{9}\pi cm^3 \) 
    \( 5\pi cm^3 \) 
    \( \frac{40}{27}\pi cm^3 \) 
    \( \frac{80}{27}\pi cm^3 \)

    Провери одговоре Не знам

  • 12.      

    Број решења једначине \(|x-1|+2x=5\) је:

    \( 4 \) 
    \( 2 \) 
    \( 3 \) 
    \( 1 \)
      више од\( 4 \) 

    Провери одговоре Не знам

  • 13.      

    Укупна цена две књиге износи \(2600\) . Уколико би се цена прве књиге увећала за \(150\) динара и цена друге умањила за \(150\) динара, тада би цена друге износила \(30\%\) цене прве књиге. Разлика цене прве и друге књиге (у динарима) једнака је:

    \(1100 \)
    \(1050 \)
    \(1250 \)
    \(1200 \)
    \(1150 \)

    Провери одговоре Не знам

  • 14.      

    Ако је запремина правог ваљка \(V=6\pi\), а површина његовог омотача \(M=4\pi\), тада је однос полупречника основе \(r \) и висине \(H, \frac{r}{H}\) једнак: 

     \(4\)  
    \(2\)  
    \(2,5\)
    \(4,5\)
    \(3 \)

    Провери одговоре Не знам

  • 15.      

    За \(a > 0\), \(b > 0\) и \(a\neq b\) , израз \(\left ( \frac{1}{\sqrt{a}-\sqrt{b}}-\frac{2\sqrt{a}}{\sqrt{a^{3}}+\sqrt{b^{3}}}:\frac{\sqrt{a}-\sqrt{b}}{a-\sqrt{ab}+b} \right )\cdot \left ( a+b+2\sqrt{ab} \right ) \) идентички је једнак изразу: 

    \(\sqrt{b}\)
    \(-\sqrt{a}-\sqrt{b}\) 
    \(\sqrt{a}+\sqrt{b}\)
    \(\sqrt{a}\)
    \(\frac{1}{a-b}\)         

    Провери одговоре Не знам

  • 16.      

     Ако је збир првих једанаест чланова геометријске прогресије \(S_{11}= 6141\), a количник \(q = 2\), први члан \(a_1\) је:

     

    \(4\)  
    \(7\)      
    \(3\)
    \(1\)
    \(5\)  

    Провери одговоре Не знам

  • 17.      

    Из тачке \(A(3,4) \) постављена је нормала \(n\) на праву \(p:4x-2y+1=0\) . Ако се праве \(p \) и \(n\) секу у тачки \(S(x_S,y_S)\) , тада је \(x_S\cdot y_S\) једнако:

    \(  9  \)
    \(   \frac{5}{2}   \)  
    \(   \frac{38}{9}   \)
    \(    \frac{39}{2}   \)  
    \(  7    \)

    Провери одговоре Не знам

  • 18.      

    Сва решења једначине \(3\cdot16^x + 2\cdot 81^x =5\cdot36^x\) припадају интервалу:

     

    \((-1,1)\) 
    \((3,5)\)    
    \((1,3)\)  
    \((5,7)\)
    \((-3,-1)\)     

    Провери одговоре Не знам

  • 19.      

    Ако за комплексан број \(z\) важи \(\left | z-3 \right |=\left | z-3+2i \right |\) и \(\left | z-2i \right |=\left | z+4-2i \right | ,\) где је \(i^{2}=-1 ,\) тада је:

    \(\left | z \right |=2\sqrt{5} \)
    \(\left | z \right |=2 \)
    \(\left | z \right |=3 \)
    \(\left | z \right |=\sqrt{5} \)
    \(\left | z \right |=5 \)

    Провери одговоре Не знам

  • 20.      

     Производ свих решења једначине \(2+4^{\sqrt{x^{2}-3}+x-3}=6\cdot 2^{\sqrt{x^{2}-3}+x-4} \) једнак је:

    \(8 \)
    \(\frac{19}{2} \)
    \(16 \)
    \(4 \)
    \(\frac{19}{4} \)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време