Задаци

  • 1.      

    Број реалних решења једначине \( \log \sqrt{x-2}+3\log \sqrt{x+2}=\frac{1}{2}+\log \sqrt{x^{2}-4}\)  је:

    \(3\)
    \(1\)
    \(4\)    
    \(0\)
    \(2\)

    Провери одговоре Не знам

  • 2.      

     Ако је \(a\neq -\frac{1}{2}\) и \(\left | a \right |\neq 2\) , онда је израз \(\left ( \frac{2a+1}{a+2}-\frac{4a+2}{4-a^{2}} \right ):\frac{2a+1}{a-2}+\left ( \frac{a+2}{2} \right )^{-1}\) идентички једнак изразу:

    \(а \)
    \(1 \)
    \(\frac{1}{a+2} \)
    \(\frac{а}{a+2} \)
    \(2 \)

    Провери одговоре Не знам

  • 3.      

    Број целобројних решења неједначине \(\frac{x^{2}-5x-5}{x^{2}+x-10}<-1\) је:

    \(0\) 
    \(3\)
    \(4\) 
    \(1\)
    \(2\)

    Провери одговоре Не знам

  • 4.      

    Тангенте постављене из тачке \(A(2,4)\) на кружницу \(x^2+y^2=2\) секу осу \(Oy\) у тачкама \(B\) и \(C\). Површина троугла \(ABC\) једнака је:

     

     \(8\)
    \(16\)
    \(10\)  
    \(12\)
    \(6 \)       

    Провери одговоре Не знам

  • 5.      

    Нека је \(S\) скуп свих целобројних вредности параметра \(m\) за које једначина \(x^2-(m-3)x+5+m=0\) има оба решења негативна. Број елемената скупа \(S\) је:

     

    \(7 \)  
    \(4\)
    \(3\)    
    \(>7\)
    \(6\)  

    Провери одговоре Не знам

  • 6.      

    Целих бројева \(x\) за које важи неједналост  \(x+1>\sqrt{5-x}\)  има:
     

     

    \(3\)  
    \(1\)     
    \(2\)
    \(4\)  
    \(5\)  

    Провери одговоре Не знам

  • 7.      

     Производ свих решења једначине \(2+4^{\sqrt{x^{2}-3}+x-3}=6\cdot 2^{\sqrt{x^{2}-3}+x-4} \) једнак је:

    \(\frac{19}{4} \)
    \(16 \)
    \(4 \)
    \(\frac{19}{2} \)
    \(8 \)

    Провери одговоре Не знам

  • 8.      

    Ако 12 радника, радећи 5 дана, зараде 125000 динара, 15 радника за 6 дана заради:

    217500 дин.   
    154500 дин. 
     163500 дин. 
     187500 дин.
    237500 дин. 

    Провери одговоре Не знам

  • 9.      

     Ако је \((a,b]\cup(c,d]\) решење неједначине \(\frac{x^2+x-28}{x^2-4x-5}\geq2\), тада је \(a+b+c+d\) једнако:

     

    \(15\)  
    \(12\)    
    \(16\)
    \(14\)  
    \(13\)

    Провери одговоре Не знам

  • 10.      

    Збир квадрата свих решења једначине \( |x + 4| - |x - 3| = x\) je:


     
     

    \(50\)
     \(100\)
    \(41\)       
    \(99\)
    \(59\)

    Провери одговоре Не знам

  • 11.      

    Вредност израза \( \frac{3}{\sqrt{2}+1}+\frac{4}{\sqrt{2}+2}+\frac{7}{\sqrt{2}+3}\) je:

     

    [math]2[\math]
    [math]4[\math]
    [math]6-\sqrt{2}[\math]
    [math]6\sqrt{2}[\math]    
    [math]3\sqrt{2}[\math]  

    Провери одговоре Не знам

  • 12.      

    Ако је \(\alpha=\frac{1}{3}\) и \(0<\alpha<\frac{\pi}{2} ,\) тада је \(tg2\alpha\) :

    \( \frac{4\sqrt{2}}{7} \)
    \( -\frac{2\sqrt{2}}{7} \) 
    \( \frac{3\sqrt{2}}{8} \) 
    \( -\frac{4\sqrt{2}}{7} \) 
    \( \frac{2\sqrt{2}}{7} \) 

    Провери одговоре Не знам

  • 13.      

    Ако се број страница конвексног \(n\)-тоугла повећа зa \(7\), број дијагонала му се повећа за \(119\). Број \(n\) износи:

     

     \(14\)  
     \(13\)
    \(12\)      
    \(17\)
    \(15\)

    Провери одговоре Не знам

  • 14.      

     Угао између веће основице и крака једнакокраког трапеза једнак је \(60^{o}\) . Ако је дужина те основице једнака \(9 cm ,\) а крака \(4 cm ,\) површина трапеза (у \(cm^2\) ) једнака је:

    \(7\sqrt{3} \)
    \(14\sqrt{3} \)
    \(16\)
    \(18 \)
    \( 24\sqrt{3} \)

    Провери одговоре Не знам

  • 15.      

    Вредност израза \(\frac{\cos 100^o+\sin 50^o}{\sin 200^o}\) једнака је:

    \(-\sqrt{2} \)
    \(\sqrt{2} \)
    \(\sqrt{3} \)
    \(-\sqrt{3} \)
    \(-2 \)

    Провери одговоре Не знам

  • 16.      

    Производ свих реалних решења једначине \( \sqrt{10+x}-\sqrt{5-x}=\sqrt{1+x}\) једнак је:


     

    \(-\frac{4}{5}\)
    \(\frac{6}{5}\)
    \(\frac{2}{5}\)  
    \(\frac{4}{5}\)      
    \(-\frac{2}{5}\)

    Провери одговоре Не знам

  • 17.      

    Израз \((a^{-1}+b^{-1})^{-1}:(b^{-1}-a^{-1})^{-1}, (a,b\neq0, a\neq b)\) идентички је једнак изразу:

    \( \frac{a-b}{a+b} \) 
    \( a^2b^2 \) 
    \( \frac{a-b}{a-b} \) 
    \( \frac{a+b}{a-b} \)
    \( 1 \) 

    Провери одговоре Не знам

  • 18.      

     Вредност израза \(\left [ 6^2+9\cdot \left ( 5,25-10\cdot (0,5)^3 \right ) +\left ( \frac{5}{2}: \frac{(25)^{\frac{1}{2}}}{6} \right )^2 \right ]^{\frac{1}{4}}\) једнака је:

    \(6 \)
    \(2 \)
    \(4 \)
    \(3 \)
    \(5 \)

    Провери одговоре Не знам

  • 19.      

    Различитих петоцифрених бројева, у чијем се запису користе две цифре 2 и по једна цифра 3, 4 и 5, има:

    \(  30    \)
    \(   40 \)
    \(    120     \)
    \( 60 \)
    \(     240    \)   

    Провери одговоре Не знам

  • 20.      

    За \(a > 0\), \(b > 0\) и \(a\neq b\) , израз \(\left ( \frac{1}{\sqrt{a}-\sqrt{b}}-\frac{2\sqrt{a}}{\sqrt{a^{3}}+\sqrt{b^{3}}}:\frac{\sqrt{a}-\sqrt{b}}{a-\sqrt{ab}+b} \right )\cdot \left ( a+b+2\sqrt{ab} \right ) \) идентички је једнак изразу: 

    \(\sqrt{a}\)
    \(-\sqrt{a}-\sqrt{b}\) 
    \(\sqrt{a}+\sqrt{b}\)
    \(\frac{1}{a-b}\)         
    \(\sqrt{b}\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време