Задаци

  • 1.      

    Тангенте постављене из тачке \(A(2,4)\) на кружницу \(x^2+y^2=2\) секу осу \(Oy\) у тачкама \(B\) и \(C\). Површина троугла \(ABC\) једнака је:

     

    \(12\)
    \(10\)  
    \(6 \)       
    \(16\)
     \(8\)

    Провери одговоре Не знам

  • 2.      

     Ако је \((a,b]\cup(c,d]\) решење неједначине \(\frac{x^2+x-28}{x^2-4x-5}\geq2\), тада је \(a+b+c+d\) једнако:

     

    \(14\)  
    \(13\)
    \(12\)    
    \(15\)  
    \(16\)

    Провери одговоре Не знам

  • 3.      

    Ако се број страница конвексног \(n\)-тоугла повећа зa \(7\), број дијагонала му се повећа за \(119\). Број \(n\) износи:

     

     \(14\)  
    \(15\)
    \(12\)      
     \(13\)
    \(17\)

    Провери одговоре Не знам

  • 4.      

    Вредност израза \(((\frac{7}{9}-\frac{7}{9}):1,25+(\frac{6}{7}-\frac{17}{28}):(0,358-0,108))\cdot1,6 - \frac{19}{25}\) je:

    \( \frac{3}{28} \) 
    \( 2 \) 
    \( 0,5 \) 
    \( 3 \) 
    \( 1 \)

    Провери одговоре Не знам

  • 5.      

    Скуп свих решења неједначине \(\frac{|x-2|}{x^2-3x+2}\geq 2\) у скупу реалних бројева je:

     

    \((1,3)\) 
    \((-\infty, \frac{1}{2}]\)          
    \((-\infty, \frac{1}{2}]\cup (1,+\infty)\)
    \((1,+\infty)\)  
    \([\frac{1}{2},1]\)

    Провери одговоре Не знам

  • 6.      

    Нека је \(S\) скуп свих целобројних вредности параметра \(m\) за које једначина \(x^2-(m-3)x+5+m=0\) има оба решења негативна. Број елемената скупа \(S\) је:

     

    \(>7\)
    \(6\)  
    \(3\)    
    \(7 \)  
    \(4\)

    Провери одговоре Не знам

  • 7.      

    Ако је \(\sin\alpha=\frac{15}{17}, \frac{\pi}{2}<\alpha<\pi\), тада је \(\cos(\frac{\pi}{4}-\alpha)\) једнако:

     
     

    \(-\frac{23\sqrt{2}}{34}\)    
    \(\frac{23\sqrt{2}}{34}\)  
    \(-\frac{7\sqrt{2}}{34} \)  
    \(-\frac{15\sqrt{2}}{34}\)  
    \(\frac{7\sqrt{2}}{34}\) 

    Провери одговоре Не знам

  • 8.      

    Збир свих решења једначине \(2^{x^2-3x}+(\frac{1}{2})^{x^2-3x-4}=17\) једнак је:

    \(     15    \)
    \(  3    \)
    \(    12     \)   
    \( 6 \)
    \(   9\)

    Провери одговоре Не знам

  • 9.      

    Дате су функције \(f_1(x)=x, f_2(x)=\sqrt{x^2}\) и \(f_3(x)=(\sqrt{x})^2 .\) Тачан је исказ:

    \( f_1 = f_2 \neq f_3    \) 
    \(   f_1 \neq f_2 = f_3   \)
    \(  f_1\neq f_2 \neq f_3 \neq f_1 \)
    \(  f_1 = f_2 = f_3  \)
    \(   f_3 = f_1 \neq f_2   \)  

    Провери одговоре Не знам

  • 10.      

    Број целобројних решења неједначине \(\frac{x^{2}-5x-5}{x^{2}+x-10}<-1\) је:

    \(0\) 
    \(2\)
    \(1\)
    \(4\) 
    \(3\)

    Провери одговоре Не знам

  • 11.      

    Ако се цена артикла најпре повећа за \(30\%\) а онда смањи за \(20\%\) коначна цена артикла у односу на почетну цену је:

    мања за\( 2\% \) 
    већа за\( 4\% \)
    већа за\( 2\% \) 
    већа за\( 10\% \) 
    већа за\( 5\% \) 

    Провери одговоре Не знам

  • 12.      

    Скуп свих решења неједначине \(2x+|x-1|<2\) у скупу реалних бројева је:

    \( (-\infty, 1) \)
    \( (1,2) \) 
    празан скуп   
    \( (-\infty, -1) \) 
    \( (1, +\infty) \) 

    Провери одговоре Не знам

  • 13.      

    Укупна цена две књиге износи \(2600\) . Уколико би се цена прве књиге увећала за \(150\) динара и цена друге умањила за \(150\) динара, тада би цена друге износила \(30\%\) цене прве књиге. Разлика цене прве и друге књиге (у динарима) једнака је:

    \(1200 \)
    \(1050 \)
    \(1250 \)
    \(1150 \)
    \(1100 \)

    Провери одговоре Не знам

  • 14.      

    Израз \((a^{-1}+b^{-1})^{-1}:(b^{-1}-a^{-1})^{-1}, (a,b\neq0, a\neq b)\) идентички је једнак изразу:

    \( \frac{a-b}{a+b} \) 
    \( \frac{a+b}{a-b} \)
    \( \frac{a-b}{a-b} \) 
    \( a^2b^2 \) 
    \( 1 \) 

    Провери одговоре Не знам

  • 15.      

     Дата је геометријска прогресија \(a_1, a_2, a_3, . . . \). Ако је \(a_1+a_7 =\frac{65}{16}\) и \(a_2+a_8 =\frac{65}{32}\) , онда је \(\frac{ a_3}{ a_{13}} \) једнако:

    \(2^{10} \)
    \(2^{-10} \)
    \(2^{12} \)
    \(2^{-12} \)
    \(2^{13} \)

    Провери одговоре Не знам

  • 16.      

    Сва решења једначине \(3\cdot16^x + 2\cdot 81^x =5\cdot36^x\) припадају интервалу:

     

    \((5,7)\)
    \((-3,-1)\)     
    \((1,3)\)  
    \((-1,1)\) 
    \((3,5)\)    

    Провери одговоре Не знам

  • 17.      

     У развоју \(\left ( \sqrt{3}+\sqrt[3]{2} \right )^{n}\), где је \(n\in \mathbb{N}\), биномни коефицијент трећег члана је 1005 пута већи од биномног коефицијента другог члана. Број чланова у том развоју који су рационални бројеви је:

    \(336\)
    \(335\)
    \(1006\)
    \(334\)
    \(1005\) 

    Провери одговоре Не знам

  • 18.      

    Ако 12 радника, радећи 5 дана, зараде 125000 динара, 15 радника за 6 дана заради:

    217500 дин.   
     163500 дин. 
    237500 дин. 
    154500 дин. 
     187500 дин.

    Провери одговоре Не знам

  • 19.      

    Нека је \(P(x) = x^5 + ax^3 + bx\) и \(Q(x) = x^2 + 2x + 1\), где су \(a\) и \(b\) реални бројеви. Ако је полином  \(P\) дељив полиномом \(Q\), тада је вредност израза \(a^2 + b^2\) једнака:

     

    \(13\)
    \(8\)
    \(10\)
    \(5\)
    \(2\)

    Провери одговоре Не знам

  • 20.      

     Све вредности параметра \(p\) , за које за решења \(x_1\) и \(x_2\) једначине \(x^2-px+6=0\) важи релација \(x_1-x_2 = 1\) , припадају скупу:

    \( (-10,-4) \) 
    \( (-4,4) \) 
    \( (-1,6) \) 
    \( (-6,6) \)
    \( (4,10) \) 

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време