Задаци

  • 1.      

     У биномном развоју  \((x^3+\frac{1}{x})^{12}\), члан који не садржи \(x\) је:

     

    девети
     пети
    једанаести
    седми
     десети

    Провери одговоре Не знам

  • 2.      

    Ако је збир свих решења једначине \(1+\log_{2}(2^{x}-1)=\log_{2^{x}-1}64 ,\) онда је вредност \(2a+3\) једнака:

    \(64 \)
    [math]32 [/math
    \(45 \)
    \(30 \)
    \(15 \)

    Провери одговоре Не знам

  • 3.      

    Једна катета правоуглог троугла дужа је од друге катете за \(10cm\) , а краћа од хипотенузе за \(10cm \). Дужина хипотенузе припада интервалу :

    \( (0,20) \) 
    \( (60,80) \) 
    \( (40,60) \)
    \( (20,40) \) 
    \( (10,30) \) 

    Провери одговоре Не знам

  • 4.      

    Ако је \((x ,y), x, y\in R, 0 < x \leq y\), решење система једначина \(x^2+y^2=51, xy=12\) тада је \(y - x^3\) једнако:

    \( \sqrt{3}  \)
    \(     2\sqrt{3}       \)  
    \(  1       \)
    \(    -\sqrt{3}        \)  
    \(   -1    \)

    Провери одговоре Не знам

  • 5.      

    Дате су тачке \(A(1,2), B(4,-7), C(6,-3).\) Ако је \(D(x_0, y_0)\) подножје висине спуштене из тачке \(C\) на страницу \(AB\), троугла \(ABC\) тада је \(x_0\cdot y_0\) једнако:

     

    \(-12\)
    \( 16\)
    \(-6 \)        
     \( 8\)
    \(4\)

    Провери одговоре Не знам

  • 6.      

     Ако бочна ивица правилне четворостране пирамиде има дужину \(6cm\) и заклапа угао \(45^{\circ}\) са равни основе, запремина пирамиде је:

    \(36\sqrt{2}cm^3\)
      \(45cm^3\)
    \(27\sqrt{2}cm^3\)
    \(\frac{40\sqrt{2}}{3}cm^3\)
    \(16\sqrt{2}cm^3\)      

    Провери одговоре Не знам

  • 7.      

      Производ свих решења једначине \(4^{x-\frac{1}{x}}+16^{x-\frac{1}{x}}=72\) једнак је:

     

    \(6      \)
    \(4\)
    \(-1\)
     \(1\)  
     \(-6\)

    Провери одговоре Не знам

  • 8.      

    Нека је \(f(x) = x^2 + 1\) и \(g(x) = 3x - 2\). Тада је вредност \(f(g^{-1} (4)) - g^{-1} (f(3))\) једнака:

     

     

    \(0\)        
    \(1\)
    \(3\)  
    \(-1\)  
    \(-3\)  

    Провери одговоре Не знам

  • 9.      

    Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+10\sqrt{3}x+6\sqrt{3}=0\) тада је \(\frac{1}{x_1}+\frac{1}{x_2}\) једнако:

    \( -\frac{5}{3}     \)
    \(    -\frac{3}{5}   \)  
    \(  -\frac{\sqrt{3}}{6}     \)
    \(            \frac{5}{3}          \)  
    \(   \frac{3}{5}     \)

    Провери одговоре Не знам

  • 10.      


     Број решења једначине \(2\sin^2x=\sin2x\) на интервалу \([-\pi,\pi]\) једнак је

    5
    4
    3      
    6

    Провери одговоре Не знам

  • 11.      

    Нека је \(S\) скуп свих целобројних вредности параметра \(m\) за које једначина \(x^2-(m-3)x+5+m=0\) има оба решења негативна. Број елемената скупа \(S\) је:

     

    \(7 \)  
    \(6\)  
    \(3\)    
    \(4\)
    \(>7\)

    Провери одговоре Не знам

  • 12.      

     Вредност израза \(\left [ 4^{-1}\left ( \frac{1}{25} \right )^{-\frac{1}{2}}+\left ( \sqrt{(-2)^{2}}-1,8 \right )^{-1} \right ]^{\frac{1}{2}}\cdot \left ( \sqrt[3]{(-1)^{3}}+2,2 \right )\) једнака је:

    \(\frac{8}{5}\)
    \(5\)  
    \(8\)    
    \(\frac{3}{5}\)
    \(3\)

    Провери одговоре Не знам

  • 13.      

    Површина правог ваљка је \(P = 8\pi cm^2 \), а висина му је за \(1cm\) краћа од пречника основе. Запремина ваљка је:

    \( 5\pi cm^3 \) 
    \( \frac{40}{27}\pi cm^3 \) 
    \( \frac{80}{27}\pi cm^3 \)
    \( 3\pi cm^3 \) 
    \( \frac{40}{9}\pi cm^3 \) 

    Провери одговоре Не знам

  • 14.      

    Биномни коефицијент четвртог члана у развоју \(\left (\sqrt[5]{11}+\sqrt[11]{5}  \right )^{n}\) је \(671\) пута већи од биномног коефицијента трећег члана. Број свих чланова у овом развоју који нису цели бројеви једнак је:

    \(1613\)  
    \(2015\)
    \(1979\)
     \(1978\)
    \(1833\)

    Провери одговоре Не знам

  • 15.      

    Тачка \(A\left ( 5,\frac{12}{5} \right )\) и жиже елипсе \(\frac{x^2}{169}+\frac{y^2}{144}=1\) су темена троугла \(ABC\) . Обим датог троугла је:

    \(30 \)
    \(28 \)
    \(36 \)
    \(34 \)
    \(32 \)

    Провери одговоре Не знам

  • 16.      

    Скуп свих решења неједначине \(2x+|x-1|<2\) у скупу реалних бројева је:

    \( (1, +\infty) \) 
    \( (-\infty, -1) \) 
    празан скуп   
    \( (-\infty, 1) \)
    \( (1,2) \) 

    Провери одговоре Не знам

  • 17.      

    Први члан геометријске прогресије је \(a_1=3\) а шести члан је \(a_6=96\) . Збир првих десет чланова \(S_10\) је:

    \( 369 \) 
    \( 3069 \)
    \( 3080 \) 
    \( 1023 \) 
    \( 6160 \) 

    Провери одговоре Не знам

  • 18.      

    Збир квадрата свих решења једначине \( |x + 4| - |x - 3| = x\) je:


     
     

    \(99\)
     \(100\)
    \(59\)
    \(50\)
    \(41\)       

    Провери одговоре Не знам

  • 19.      

    У троуглу \(ABC\) је \(AB = 6 cm \), \(AC = 5 cm\) и \(AD = 4 cm\) , где је \(D\) подножје висине из темена \(A .\) Дужина полупречника описане кружнице троугла \(ABC \)\(cm\) ) једнака је:

    \(\frac{17}{4}cm \)
    \(\frac{9}{2}cm \)
    \(\frac{15}{4}cm \)
    \(\frac{7}{2}cm \)
    \(17 \)

    Провери одговоре Не знам

  • 20.      

    Скуп решења неједначине \(\log_{\frac{1}{2}}(x^{2}-2x+1)>\log_{2}\frac{1}{4}\) је:

    \((-1,1)\cup (1,3)\)
    \((0,3)\)
     \((-1,0)\)
    \((1,3)\)  
    \((-1,3)\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време