Пријемни испит
Број поена
Саобраћајни, Технички, Машински и Факултет организационих наука
На колико начина се од 6 девојака и 7 младића може саставити екипа од 5 чланова, тако да у екипи буду 3 девојке и 2 младића?
Комплексни број \(\frac{11+2i}{3-4i}\) једнак је:
Из тачке \(A(3,4) \) постављена је нормала \(n\) на праву \(p:4x-2y+1=0\) . Ако се праве \(p \) и \(n\) секу у тачки \(S(x_S,y_S)\) , тада је \(x_S\cdot y_S\) једнако:
Ако су странице троугла \(a=1, b=3\sqrt{2}, c=5\), тада је највећи угао једнак:
Нека је \(P(x) = x^5 + ax^3 + bx\) и \(Q(x) = x^2 + 2x + 1\), где су \(a\) и \(b\) реални бројеви. Ако је полином \(P\) дељив полиномом \(Q\), тада је вредност израза \(a^2 + b^2\) једнака:
Ако 12 радника, радећи 5 дана, зараде 125000 динара, 15 радника за 6 дана заради:
Ako за решења \(x_1\) и \(x_2\) једначине \(kx^2-(3k+2)x+7=0\) важи \( \frac{1}{x_1}\frac{1}{x_2}=8\), вредност параметра \(k\) припада интервалу:
На сајму књига првог дана је продато \(40\%\) књига мање него другог дана, а трећег за четвртину мање него првог и другог дана заједно. Ако је прва три дана укупно продато \(10500\) књига, онда је првог дана овог сајма продато:
Ако за комплексан број \(z\) важи \(\left | z-3 \right |=\left | z-3+2i \right |\) и \(\left | z-2i \right |=\left | z+4-2i \right | ,\) где је \(i^{2}=-1 ,\) тада је:
Скуп свих решења неједначине \(3\cdot 81^{x}+2\cdot 16^{x}\leqslant 5\cdot 36^{x}\) је:
Скуп свих решења неједначине \(\frac{4x-3}{x-2}>3\) је:
Број различитих решења једначине \(1 + \sin 2x - 2\sin x = \cos 2x\) на интервалу \([0,3\pi]\) је:
Шестоцифрених бројева дељивих са 2, код којих су све цифре различите, направљених од цифара 0 , 1, 2 , 3 , 4 , 5 има:
Скуп решења неједначине \(\log_{\frac{1}{2}}(x^{2}-2x+1)>\log_{2}\frac{1}{4}\) је:
Вредност израза \(\frac{8}{3-\sqrt{5}}-\frac{2}{2+\sqrt{5}}\) je:
Ако је запремина правог ваљка \(V=6\pi\), а површина његовог омотача \(M=4\pi\), тада је однос полупречника основе \(r \) и висине \(H, \frac{r}{H}\) једнак:
Целих бројева \(x\) за које важи неједналост \(x+1>\sqrt{5-x}\) има:
Око праве правилне четворостране призме запремине \(128 cm^3\) описан је кружни ваљак тако да основа призме припадају одговарајућим основама ваљка. Запремина тог ваљка ( у \(cm^3\) ) износи:
Број свих целобројних решења неједначине \(\frac{4x^{2}-5x-39}{x^{2}-x-12}\leqslant 3\) је:
Производ свих реалних решења једначине \(|x|+|x-1|=x+\frac{1}{2}\) једнак је:
Тренутно нема података за приказ графикона!
Попуните образац за слање ваших резултата вашем наставнику.