Пријемни испит
Број поена
Саобраћајни, Технички, Машински и Факултет организационих наука
Вредност израза \(\left [ 6^2+9\cdot \left ( 5,25-10\cdot (0,5)^3 \right ) +\left ( \frac{5}{2}: \frac{(25)^{\frac{1}{2}}}{6} \right )^2 \right ]^{\frac{1}{4}}\) једнака је:
Производ свих решења једначине \(2+4^{\sqrt{x^{2}-3}+x-3}=6\cdot 2^{\sqrt{x^{2}-3}+x-4} \) једнак је:
Решење једначине \(log_2(3x-7)=5\) je:
Збир највећег негативног и најмањег позитивног решења неједначине \(\cos ^{4}x-\sin ^{4}x=1+\sin x\) је:
Основе правог ваљка и праве купе су кругови полупречника \(12 cm\). Ако су запремине ваљка и купе једнаке, а висина купе за \(6 cm\) дужа од висине ваљка, онда је однос површина ваљка и купе једнак:
Скуп решења неједначине \(\log_{\frac{1}{2}}(x^{2}-2x+1)>\log_{2}\frac{1}{4}\) је:
Збир квадрата свих решења једначине \(4^x=2^{\frac{x+1}{x}}\) је:
У троуглу \(ABC\) је \(AB = 6 cm \), \(AC = 5 cm\) и \(AD = 4 cm\) , где је \(D\) подножје висине из темена \(A .\) Дужина полупречника описане кружнице троугла \(ABC \)(у \(cm\) ) једнака је:
Целих бројева који припадају скупу решења неједначине \(\frac{3x-16}{-x^2+11x-28} \geq 1\) има:
Ако за комплексан број \(z\) важи \(\frac{\left | z-1+i \right |}{\left | z-2+2i \right |}=1\) и \(\frac{\left | z \right |}{\left | z-1-i \right |}=1\), гдеје \( i^2 = -1\), тада је \(Im(\bar{z}\cdot i)\) једнак:
На колико начина се од 6 девојака и 7 младића може саставити екипа од 5 чланова, тако да у екипи буду 3 девојке и 2 младића?
Израз \(\cos(\alpha + \beta)\cos(\alpha - \beta)- \sin(\alpha + \beta)\sin(\alpha - \beta)\) идентички је једнак изразу:
Ако 12 радника, радећи 5 дана, зараде 125000 динара, 15 радника за 6 дана заради:
Збир свих девет чланова аритметичке прогресије је за \(164\) већи од збира првих пет чланова те прогресије. Ако је девети члан за \(14\) мањи од двоструке вредности шестог члана, онда је производ прва два члана дате прогресије једнак:
Дата је геометријска прогресија \(a_1, a_2, a_3, . . . \). Ако је \(a_1+a_7 =\frac{65}{16}\) и \(a_2+a_8 =\frac{65}{32}\) , онда је \(\frac{ a_3}{ a_{13}} \) једнако:
Вредност израза \(((\frac{7}{9}-\frac{7}{9}):1,25+(\frac{6}{7}-\frac{17}{28}):(0,358-0,108))\cdot1,6 - \frac{19}{25}\) je:
Ако је \(sin\alpha=\frac{5}{13}, \frac{\pi}{2}<\alpha<\pi, cos\beta=-\frac{3}{5}, \pi<\beta<\frac{3\pi}{2}\) , тада је \(cos(\alpha + \beta)\) једнако:
Ако се број страница конвексног \(n\)-тоугла повећа зa \(7\), број дијагонала му се повећа за \(119\). Број \(n\) износи:
Ако је лопта запремине \(V_1\) уписана у коцку запремине \(V_2\) , тада је \(\frac{V_1}{V_2}\) једнако:
Све вредности параметра \(p\) , за које за решења \(x_1\) и \(x_2\) једначине \(x^2-px+6=0\) важи релација \(x_1-x_2 = 1\) , припадају скупу:
Тренутно нема података за приказ графикона!
Попуните образац за слање ваших резултата вашем наставнику.