Пријемни испит
Број поена
Саобраћајни, Технички, Машински и Факултет организационих наука
Збир свих девет чланова аритметичке прогресије је за \(164\) већи од збира првих пет чланова те прогресије. Ако је девети члан за \(14\) мањи од двоструке вредности шестог члана, онда је производ прва два члана дате прогресије једнак:
Једна катета правоуглог троугла дужа је од друге катете за \(10cm\) , а краћа од хипотенузе за \(10cm \). Дужина хипотенузе припада интервалу :
Израз \(\frac{sin(\alpha+\beta)+sin(\alpha-\beta)}{cos(\alpha+\beta)+cos(\alpha-\beta)}\) идентички је једнак изразу:
Површина правог ваљка је \(P = 8\pi cm^2 \), а висина му је за \(1cm\) краћа од пречника основе. Запремина ваљка је:
Дата је геометријска прогресија \(a_1, a_2, a_3, . . . \). Ако је \(a_1+a_7 =\frac{65}{16}\) и \(a_2+a_8 =\frac{65}{32}\) , онда је \(\frac{ a_3}{ a_{13}} \) једнако:
Тачка \(A\left ( 5,\frac{12}{5} \right )\) и жиже елипсе \(\frac{x^2}{169}+\frac{y^2}{144}=1\) су темена троугла \(ABC\) . Обим датог троугла је:
Скуп свих решења неједначине \(\frac{4x-3}{x-2}>3\) је:
У троуглу су странице \(b=3\sqrt{3}\) и \(c= 6\) , а најмањи угао \(\alpha=\frac{\pi}{6} \). Ако је трећа страница \(a < b\) , тада је \(a\) једнако:
Збир квадрата свих решења једначине \(4^x=2^{\frac{x+1}{x}}\) је:
Скуп свих решења неједначине \(\frac{|x-2|}{x^2-3x+2}\geq 2\) у скупу реалних бројева je:
Ако је \(a=225^{\frac{1}{2}-\log_{15}\sqrt[4]{9}}\) онда је \((a-4)^{a}\) једнако:
Ако је \(log_\sqrt{5}\), тада је \(log_{10}2\) једнако:
Ако је запремина правог ваљка \(V=6\pi\), а површина његовог омотача \(M=4\pi\), тада је однос полупречника основе \(r \) и висине \(H, \frac{r}{H}\) једнак:
Ако за комплексан број \(z\) важи \(\frac{\left | z-1+i \right |}{\left | z-2+2i \right |}=1\) и \(\frac{\left | z \right |}{\left | z-1-i \right |}=1\), гдеје \( i^2 = -1\), тада је \(Im(\bar{z}\cdot i)\) једнак:
Нека је \(P(x) = x^5 + ax^3 + bx\) и \(Q(x) = x^2 + 2x + 1\), где су \(a\) и \(b\) реални бројеви. Ако је полином \(P\) дељив полиномом \(Q\), тада је вредност израза \(a^2 + b^2\) једнака:
Вредност израза \(\left [ 4^{-1}\left ( \frac{1}{25} \right )^{-\frac{1}{2}}+\left ( \sqrt{(-2)^{2}}-1,8 \right )^{-1} \right ]^{\frac{1}{2}}\cdot \left ( \sqrt[3]{(-1)^{3}}+2,2 \right )\) једнака је:
Основе правог ваљка и праве купе су кругови полупречника \(12 cm\). Ако су запремине ваљка и купе једнаке, а висина купе за \(6 cm\) дужа од висине ваљка, онда је однос површина ваљка и купе једнак:
Ако су \(x_1\) и \(x_2\) решења једначине \(x^2+10\sqrt{3}x+6\sqrt{3}=0\) тада је \(\frac{1}{x_1}+\frac{1}{x_2}\) једнако:
Ако је \(sin\alpha=\frac{5}{13}, \frac{\pi}{2}<\alpha<\pi, cos\beta=-\frac{3}{5}, \pi<\beta<\frac{3\pi}{2}\) , тада је \(cos(\alpha + \beta)\) једнако:
Израз \(\cos(\alpha + \beta)\cos(\alpha - \beta)- \sin(\alpha + \beta)\sin(\alpha - \beta)\) идентички је једнак изразу:
Тренутно нема података за приказ графикона!
Попуните образац за слање ваших резултата вашем наставнику.