Задаци

  • 1.      

    Ако је:

     

    \(\begin{eqnarray} x-2y+z&=&7\\ 2x+3y-z&=&-2\\ -x+2y+2z&=&2 \end{eqnarray}\)

     

    онда је \(x^2+y^2+z^2\) једнако:

    10
    16
    8
    14
    12

    Провери одговоре Не знам

  • 2.      

    Скуп свих решења неједначине \(\frac{\left | 1-x \right |}{1-\left | x \right |}<\frac{1+\left | x \right |}{\left | 1+x \right |}\) је облика (за неке реалне бројеве \(a\) и \(b\) такве да је \(0 < a < b < + \infty ):\)

    \((a, +\infty ) \)
    \((-b, -a) \cup (a, b) \)
    \((-\infty, -a) \cup (-a, a ) \cup (a, +\infty ) \)
    \((-\infty, -a) \cup (a, +\infty ) \)
    \((-\infty, -a) \)

    Провери одговоре Не знам

  • 3.      

    Ако су \(x_{1}\) и \(x_{2}\) решења квадратне једначине \(x^2+x+1=0\), тада су \(y_{1}=ax_{1}+x_{2}\) и \(y_{2}=x_{1}+ax_{2}\), \((a \in R)\), решења квадратне једначине:

    \(y^{2}+(a+1)y-a^2+a+1=0\)
    \(y^{2}+(a^2+1)y+a^2-a+1=0\)
    ниједан од понуђених одговора
    \(y^{2}+(a+1)y+a^2-a+1=0\)
    \(y^{2}+(a^2+1)y+1=0\)

    Провери одговоре Не знам

  • 4.      

    Вредност израза \(\left( 1-sin\frac{\pi}{8} \right)\left( 1+sin\frac{\pi}{8} \right)\) је:

    \(\frac{1}{4}\)
    \(\frac{\sqrt{2}}{8}\)
    \(\frac{\sqrt{2}}{4}\)
    \(\frac{2+\sqrt{2}}{4}\)
    \(\frac{2-\sqrt{2}}{4}\)

    Провери одговоре Не знам

  • 5.      

    Реалан део комплексног броја \( \frac{1}{2-\sqrt{5}+i\sqrt{3}}\) је:

    \(\frac{1-\sqrt{5}}{4}\)
    \(\frac{1}{3-\sqrt{5}}\)
    \(\frac{(\sqrt{5}-3)\sqrt{3}}{16}\)
    \(-2-\sqrt{5}\)
    \(\frac{1-\sqrt{5}}{16}\)

    Провери одговоре Не знам

  • 6.      

    Средиште горње основе коцке и средишта ивица њене доње основе су темена пирамиде. Ако је ивица коцке \(2cm\), површина омотача пирамиде је:

    \(3\sqrt{2}{cm}^2\)
    \(4\sqrt{3}{cm}^2\)
    \(9{cm}^2\)
    \(6{cm}^2\)
    \(4\sqrt{2}{cm}^2\)

    Провери одговоре Не знам

  • 7.      

    Око кружнице полупречника \(2cm\) описан је једнакокраки трапез површине \(20cm^2\). Дужина његовог крака је:

     

    \(10cm\)      
    \(6cm\)
    \(5cm\)  
     такав трапез не постоји
    \(20cm\)

    Провери одговоре Не знам

  • 8.      

    Ако се зна да \(\frac{14}{9}\) биномног коефицијента трећег члана, биномни коефицијент четвртог члана и биномни коефицијент петог члана у развоју бинома \(\left( \sqrt[3]{x}+\frac{1}{\sqrt{x}} \right)^n\)\((n \in N, x>0)\), чине геометријску прогресију, тада је биномни коефицијент уз \(\sqrt{x}\) једнак:

    \(1\)
    \(84\)
    \(5\)
    \(21\)
    \(48\)

    Провери одговоре Не знам

  • 9.      

    Број \((1 + i\sqrt{3})^n\) је реалан ако и само ако ( \(k\) је цео број):

    \(n = 6k\)
    \(n = 3k\)
    \(n = 3k + 1\)
    \(n = 2k\)  
    \(n = 3k + 2\)

    Провери одговоре Не знам

  • 10.      

    Aко је \(f(x)=x^3-3x\) и \(g(x)=\sin \frac{\pi }{12}x\) тада је \(f(g(2))\) једнако:

    \(0 \)
    \(-\frac{11}{8} \)
    \(\frac{11}{2} \)
    \(-\frac{11}{2} \)
    \(\frac{11}{8}\)

    Провери одговоре Не знам

  • 11.      

    Број решења једначине \(\sin^2x+cosx+1=0\) на интервалу \((0, 4\pi)\) је:

    3
    1
    4
    0
    2

    Провери одговоре Не знам

  • 12.      

    Збир свих целих бројева који задовољавају једначину \(\frac{x}{x+2} \leq \frac{1}{1-x}\)  је:

     \(1\)  
    \(0\)
    \(−1\)
    бесконачан
    \(−2\)    

    Провери одговоре Не знам

  • 13.      

    Ако права \(y = 2x + p\) у равни \(Oxy ( p \in R )\) додирује параболу \(y = x^2 − x\), онда \(p\) припада интервалу:

     

    \([2, 4]\)
    \([−4, −2)\)   
    \([−10, −8)\)  
    \([−8, −4)\)
    \([−2, 2)\)  

    Провери одговоре Не знам

  • 14.      

    Ако је \(A=\frac{1}{6}\left((log_{2}{3})^3- (\log_{2}{6})^3-(\log_{2}{12})^3+(log_{2}{24})^3 \right)\), тада је вредност израза \(2^A\) једнака:

    \(1\)
    \(36\)
    \(64\)
    \(72\)
    \(144\)

    Провери одговоре Не знам

  • 15.      

    Решење једначине \(2^{16^{x}}=16^{2^{x}}\) јесте:

    \(\frac{3}{4} \)
    \(\frac{4}{5} \)
    \(\frac{1}{2} \)
    \(\frac{2}{3} \)
    \(\frac{5}{6} \)

    Провери одговоре Не знам

  • 16.      

    Тангента криве \(y=e^{-x} (x>-1)\), сече координатне осе у тачкама \(A\) и \(B\). Ако је \(O\) координатни почетак, максимална површина троугла \(AOB\) износи:

    \(e\)
    \(2e\)
    \(\frac{3}{e}\)
    \(\frac{2}{e}\)
    \(\frac{1}{e}\)

    Провери одговоре Не знам

  • 17.      

    Највећа могућа запремина праве купе чија изводница има дужину \(s\) је: 

    \(\frac{2\pi s^3\sqrt{3}}{27}\)
    \(\frac{4\pi s^3\sqrt{3}}{27}\)  
     \(\frac{2\pi s^3\sqrt{2}}{27}\)
    \(\frac{\pi s^3\sqrt{3}}{9}\)  
    \(\frac{\pi s^3\sqrt{3}}{27}\)  

    Провери одговоре Не знам

  • 18.      

    Ако је \(f \left( \frac{x+3}{x+1} \right)=3x+2\) за \(x \in R \backslash \{ -1 \}\), онда је \(f(5)\) једнако:

    17
    \(\frac{1}{2}\)
    \(-\frac{1}{2}\)
    5
    \(\frac{5}{2}\)

    Провери одговоре Не знам

  • 19.      

    Који од датих интервала садржи сва решења једначине \(\frac{x-1}{\sqrt{x}+1}= 4+\frac{\sqrt{x}-1}{2}\)?

    \((24, 92]\)
    \((10, 24]\)
    \([1, 6)\)  
    \((−1, 1)\)
    \([6, 10]\)

    Провери одговоре Не знам

  • 20.      

    Збир првих 2012 чланова аритметичке прогресије \(\frac{2011}{2012}, \frac{2010}{2012}, \frac{2009}{2012}, \cdots \) износи:

    \(\frac{2011}{4} \)
    \(\frac{2011}{2} \)
    \(\frac{2013}{2} \)
    \(\frac{2013}{4} \)
    Ни један од понуђених одговора

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време