Задаци

  • 1.      

    У правој купи угао између изводнице и висине је \(60^{\circ}\) а изводница је за \(2cm\) дужа од висине. Колика је запремина те купе?

     

     \(\frac{\pi}{2} cm^3\)  
    \(8\pi cm^3\)
    \(\frac{\pi}{3} cm^3\)
    \(\pi cm^3\)
    \(\pi^2 cm^3\)    

    Провери одговоре Не знам

  • 2.      

    Ако се зна да \(\frac{14}{9}\) биномног коефицијента трећег члана, биномни коефицијент четвртог члана и биномни коефицијент петог члана у развоју бинома \(\left( \sqrt[3]{x}+\frac{1}{\sqrt{x}} \right)^n\)\((n \in N, x>0)\), чине геометријску прогресију, тада је биномни коефицијент уз \(\sqrt{x}\) једнак:

    \(5\)
    \(84\)
    \(1\)
    \(21\)
    \(48\)

    Провери одговоре Не знам

  • 3.      

    Опадајућа аритметичка прогресија \((a_n)\) је таква да важи \(a_1^2  + a_2^2  + a_3^2  = 56\)  и \(\frac{a_{10}}{a_2}=5\). Тада је \(a_{2014}\) једнако

    \(−4028\)
    \(4030\)
    \(−4030\)
    таква прогресија не постоји 
    \(4028\)      

    Провери одговоре Не знам

  • 4.      

    Странице троугла су \(21\) и \(9\sqrt{2} ,\) а њима захваћени угао \(45^o .\) Збир полупречника уписаног и описаног круга тог троугла је:

    \(6(\sqrt{2}+1) \)
    \(6(\sqrt{3}+2) \)
    \(6(\sqrt{3}-\sqrt{2}) \)
    \(6(\sqrt{2}-1) \)
    \(3(-\sqrt{3}+2) \)

    Провери одговоре Не знам

  • 5.      

    Број парова \((p,q), p,q \in R\) таквих да је полином \(x^4+px^2+q\) дељив полиномом \(x^2+px+q\), једнак је:

    \(4\)
    \(1\)
    \(2\)
    \(5\)
    \(0\)

    Провери одговоре Не знам

  • 6.      

    Скуп свих решења неједначине \(\frac{\left | 1-x \right |}{1-\left | x \right |}<\frac{1+\left | x \right |}{\left | 1+x \right |}\) је облика (за неке реалне бројеве \(a\) и \(b\) такве да је \(0 < a < b < + \infty ):\)

    \((a, +\infty ) \)
    \((-\infty, -a) \)
    \((-\infty, -a) \cup (a, +\infty ) \)
    \((-\infty, -a) \cup (-a, a ) \cup (a, +\infty ) \)
    \((-b, -a) \cup (a, b) \)

    Провери одговоре Не знам

  • 7.      

    Која од наведених релација постоји између решења \(x_1\) и \(x_2\) квадратне једначине \((1+m)x^{2}-(6+5m)x+5+6m=0, (m\in \mathbb{R}, m\neq 1) ?\)

    \(-x_1x_2+x_1+x_2+2=0 \)
    \(4 x_1x_2+x_1+x_2=2 \)
    \(3x_1x_2+x_1+x_2-1=0 \)
    \(x_1x_2+x_1+x_2-11=0 \)
    \(-x_1x_2+x_1+x_2-4=0 \)

    Провери одговоре Не знам

  • 8.      

    Укупан број реалних решења једначине \(\sqrt{3\cdot 2^{\log_{10}2x}+1}+\sqrt{2\cdot 2^{\log_{10}2x}+9}=\sqrt{13\cdot 2^{\log_{10}2x}-4}\) је:

    \(1 \)
    \(2 \)
    \(0 \)
    \(3 \)
    Ниједан од понуђених одговора

    Провери одговоре Не знам

  • 9.      

    Ако график функције \(y=\frac{1}{x^2-ax+2}\) садржи тачку \(M\left( -3, \frac{1}{19} \right)\) онда је највећа вредност функције једнака:

    \(\frac{1}{2}\)
    \(4\)
    \(\frac{3}{22}\)
    \(\frac{3}{10}\)
    \(\frac{9}{2}\)

    Провери одговоре Не знам

  • 10.      

    Растојање координатног почетка \(O\) правоуглог координатног система \(xOy\) од праве задате једначином \(y=3x+5\) је:

    \(\frac{3}{2}\)
    \(\frac{\sqrt{5}}{2}\)
    \(\frac{\sqrt{10}}{3}\)
    \(\frac{\sqrt{10}}{2}\)
    \(\frac{\sqrt{5}}{3}\)

    Провери одговоре Не знам

  • 11.      

    Вредност израза \(\left( 1-sin\frac{\pi}{8} \right)\left( 1+sin\frac{\pi}{8} \right)\) је:

    \(\frac{\sqrt{2}}{8}\)
    \(\frac{\sqrt{2}}{4}\)
    \(\frac{2-\sqrt{2}}{4}\)
    \(\frac{2+\sqrt{2}}{4}\)
    \(\frac{1}{4}\)

    Провери одговоре Не знам

  • 12.      

    Коефициент уз \(x^{27}y^{2}\) у развоју бинома \(\left ( x^{3}+\sqrt{y} \right )^{13}\) једнак је:

    \(715 \)
    \(12 \)
    \(1516 \)
    \(1312 \)
    \(78 \)

    Провери одговоре Не знам

  • 13.      

    Једначина \(\sqrt{1-x}=-x\) :

    има тачно једно решење и оно је негативно
    нема решења                
    има тачно једно решење и оно је позитивно
    има више од два решење
    има тачно два решења

    Провери одговоре Не знам

  • 14.      

    Знајући да је \(\cos\left({x-\frac{3\pi}{2}}\right)=-\frac{4}{5}\) и \(\frac{\pi}{2}<x<\pi\), тада је вредност израза \(\sin\frac{x}{2}\cos{\frac{5x}{2}}\) једнака:

    \(\frac{82}{125}\)
    \(1\)
    \(\frac{4}{125}\)
    \(-\frac{38}{125}\)
    \(-1\)

    Провери одговоре Не знам

  • 15.      

    Кружница пролази кроз крајње тачке једне странице квадрата и кроз средиште наспрамне странице. Ако је страница квадрата дужине \(a\), онда је пречник кружнице једнак: 

    \(\frac{5a}{4}\)
     \(\frac{3a}{2}\)  
    \(\frac{a+1}{a}\)
    \(\frac{\sqrt{5}a}{4}\)
    \(\frac{3a}{\sqrt{2}}\)  

    Провери одговоре Не знам

  • 16.      

    Ако је \(f(\frac{x+3}{x+1})=3x+2\)  за \(x \in R \setminus\{ -1\}\), онда је  \(f(5)\) једнако:

    \( \frac{1}{2}\)
    \( 5 \)
    \( -\frac{1}{2} \)
    \( \frac{5}{2} \)
    \( 17 \)

    Провери одговоре Не знам

  • 17.      

    Ако је \(N\) број шестоцифрених бројева који у свом запису садрже цифру 1 бар на једном месту, тада \(N\) припада интервалу:

    \([3 \cdot 10^5, 4 \cdot 10^5)\)
    \([2 \cdot 10^5, 3 \cdot 10^5)\)
    \([5 \cdot 10^5, 6 \cdot 10^5)\)
    \([4 \cdot 10^5, 5 \cdot 10^5)\)
    \([10^5, 2 \cdot 10^5)\)

    Провери одговоре Не знам

  • 18.      

    Ако је \(k \in Z\) и \(0,0010101 \cdot 10^{k}>1001\), која је намања могућа вредност за \(k\)?

    \(5\)
    \(-6\)
    \(0\)
    \(-5\)
    \(6\)

    Провери одговоре Не знам

  • 19.      

    Ако су \(\alpha\) и \(\beta\) решења једначине \(x^2-2x+5=0\), онда је \(\frac{​\alpha^2+\alpha \beta+ \beta^2}{\alpha^3+\beta^3}\) једнако:

    \(-\frac{1}{2}\)
    \(\frac{1}{22}\)
    \(\frac{1}{2}\)
    \(-\frac{1}{22}\)
    \(\frac{1}{11}\)

    Провери одговоре Не знам

  • 20.      

    Једно од реалних решења једначине \(\log_{\cos{x}}\sin{x}=4\log_{\sin{x}}\cos{x}\) припада интервалу:

    \(\left(\frac{\pi}{3}, \frac{\pi}{2} \right)\)
    \(\left(\frac{\pi}{4}, \frac{\pi}{3} \right]\)
    \(\left(\frac{\pi}{6}, \frac{\pi}{4} \right]\)
    \(\left(0, \frac{\pi}{6} \right]\)
    \(\left[\frac{5\pi}{6}, \pi \right)\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време