Задаци

  • 1.      

    Коефициент уз \(x^{27}y^{2}\) у развоју бинома \(\left ( x^{3}+\sqrt{y} \right )^{13}\) једнак је:

    \(715 \)
    \(1312 \)
    \(12 \)
    \(1516 \)
    \(78 \)

    Провери одговоре Не знам

  • 2.      

    Ако график функције \(y=\frac{1}{x^2-ax+2}\) садржи тачку \(M\left( -3, \frac{1}{19} \right)\) онда је највећа вредност функције једнака:

    \(4\)
    \(\frac{1}{2}\)
    \(\frac{3}{22}\)
    \(\frac{3}{10}\)
    \(\frac{9}{2}\)

    Провери одговоре Не знам

  • 3.      

    Која од наведених релација постоји између решења \(x_1\) и \(x_2\) квадратне једначине \((1+m)x^{2}-(6+5m)x+5+6m=0, (m\in \mathbb{R}, m\neq 1) ?\)

    \(-x_1x_2+x_1+x_2-4=0 \)
    \(x_1x_2+x_1+x_2-11=0 \)
    \(4 x_1x_2+x_1+x_2=2 \)
    \(3x_1x_2+x_1+x_2-1=0 \)
    \(-x_1x_2+x_1+x_2+2=0 \)

    Провери одговоре Не знам

  • 4.      

    Ако је \(a\in \mathbb{R}\) и \(\left | a+\frac{1}{a} \right |=3\) тада је \(\left | a-\frac{1}{a} \right |\) једнако:

    \(\sqrt{3} \)
    \(\sqrt{7} \)
    \(0 \)
    \(\sqrt{5} \)
    \(\sqrt{2} \)

    Провери одговоре Не знам

  • 5.      

    Ако је \(A=\frac{1}{6}\left((log_{2}{3})^3- (\log_{2}{6})^3-(\log_{2}{12})^3+(log_{2}{24})^3 \right)\), тада је вредност израза \(2^A\) једнака:

    \(64\)
    \(144\)
    \(72\)
    \(1\)
    \(36\)

    Провери одговоре Не знам

  • 6.      

    Aко је \(f(x)=x^3-3x\) и \(g(x)=\sin \frac{\pi }{12}x\) тада је \(f(g(2))\) једнако:

    \(\frac{11}{2} \)
    \(0 \)
    \(-\frac{11}{2} \)
    \(\frac{11}{8}\)
    \(-\frac{11}{8} \)

    Провери одговоре Не знам

  • 7.      

    Бројеви \(a, b, c\) су узастопни чланови растућег аритметичког низа, а бројеви \(a,b,c+1\) су узастопни бројеви геометријског низа. Ако је \(a+b+c=18\), онда је \(a^2+b^2+c^2\) једнако:

    140
    126
    133
    109
    116

    Провери одговоре Не знам

  • 8.      

    Нека је \(\DeclareMathOperator\tg{tg} \DeclareMathOperator\ctg{ctg} f_1(x)=1, f_2(x)= \tg{\frac{x}{2}}\ctg{\frac{x}{2}}\) и \(\DeclareMathOperator\tg{tg} \DeclareMathOperator\ctg{ctg} f_3(x)= \frac{|\sin x|}{\sqrt{1-\cos^2x}}\). Тачно је тврђење:

    међу датим функцијама нема једнаких
    \(f_1=f_3 \neq f_2\)
    \(f_1 \neq f_2 = f_3\)
    \(f_1=f_2 \neq f_3\)
    све функције су једнаке међу собом

    Провери одговоре Не знам

  • 9.      

    Опадајућа аритметичка прогресија \((a_n)\) је таква да важи \(a_1^2  + a_2^2  + a_3^2  = 56\)  и \(\frac{a_{10}}{a_2}=5\). Тада је \(a_{2014}\) једнако

    \(4030\)
    таква прогресија не постоји 
    \(−4028\)
    \(4028\)      
    \(−4030\)

    Провери одговоре Не знам

  • 10.      

    Око кружнице полупречника \(2cm\) описан је једнакокраки трапез површине \(20cm^2\). Дужина његовог крака је:

     

     такав трапез не постоји
    \(20cm\)
    \(10cm\)      
    \(6cm\)
    \(5cm\)  

    Провери одговоре Не знам

  • 11.      

    Број реалиних решења једначине \(f(x)+f(f(x))=x\), где је \(f(x)=|x|+a\)\(a>0\) једнак је:

    \(0\)
    \(2\)
    \(4\)
    \(1\)
    \(3\)

    Провери одговоре Не знам

  • 12.      

    Реалан део комплексног броја \( \frac{1}{2-\sqrt{5}+i\sqrt{3}}\) је:

    \(\frac{1-\sqrt{5}}{4}\)
    \(\frac{(\sqrt{5}-3)\sqrt{3}}{16}\)
    \(\frac{1-\sqrt{5}}{16}\)
    \(\frac{1}{3-\sqrt{5}}\)
    \(-2-\sqrt{5}\)

    Провери одговоре Не знам

  • 13.      

    Једначина круга чији је центар тачка пресека правих \(x-2y+4=0\) и \(3x+y-9=0\), а који додирује праву \(3x+4y+2 \) гласи:

    \(x^{2}-4x+y^{2}-6y-3=0 \)
    \(x^{2}-4x+y^{2}-6y+1=0 \)
    \(x^{2}-4x+y^{2}-6y=0 \)
    \(x^{2}-4x+y^{2}-6y-1=0 \)
    \(x^{2}-4x+y^{2}-6y-2=0 \)

    Провери одговоре Не знам

  • 14.      

    Сва реална решења једначине \(\frac{x+\sqrt{3}}{\sqrt{3}+\sqrt{x+\sqrt{3}}}+\frac{x-\sqrt{3}}{\sqrt{3}-\sqrt{x-\sqrt{3}}}=\sqrt{x}\) налазе се у скупу:

    \([3\sqrt{3},6)\)
    \((2\sqrt{3},3\sqrt{3})\)
    \(\emptyset\)
    \([6,8)\)
    \([\sqrt{3},2\sqrt{3})\)

    Провери одговоре Не знам

  • 15.      

    Четири младића и четири девојке иду у биоскоп. Имају карте за места у истом реду који има тачно 8 седишта. На колико начина се могу распоредити ако је познато да две од девојака не желе да седа ни на првом ни на последњем месту. 
     

     

    \(15\cdot 6!\)
    \(\frac{8!}{4!}\)
    \(\frac{(8!)^2}{2}\)
    \(30\cdot 6!\)
    \(2\cdot 6!\)  

    Провери одговоре Не знам

  • 16.      

    Укупан број реалних решења једначине \(3 tg^{2}x-8\cos^{2} x+1=0\) која пропадају интервалу \((0,2\pi )\) је:

    \(2 \)
    \(5 \)
    \(3 \)
    \(4 \)
    \(6 \)

    Провери одговоре Не знам

  • 17.      

    Коефицијент уз \(x^{24}\) у развијеном облику степена бинома \((x^2-2x)^{13}\) је:

    -312
    -78
    78
    156
    312

    Провери одговоре Не знам

  • 18.      

    Вредност израза \( \frac{1-tg^215^{\circ}}{1+tg^215^{\circ}}\) је:

    \(-\frac{2}{\sqrt{3}}\)
    \(\frac{\sqrt{3}}{2}\)  
    \(\sqrt{3}\)
    \(1\)
    \(\frac{1}{2}\)

    Провери одговоре Не знам

  • 19.      

    Број решења једначине \(\sin^2x+cosx+1=0\) на интервалу \((0, 4\pi)\) је:

    3
    4
    2
    1
    0

    Провери одговоре Не знам

  • 20.      

    Максимална запремина ваљка уписаног у лопту полупречника \(R\) је:

    \(\frac{2}{3\sqrt{3}}R^3\pi\)
    \(\frac{4}{3\sqrt{3}}R^3\pi\)
    \(\frac{2}{3}R^3\pi\)
    \(\frac{1}{\sqrt{2}}R^3\pi\)
    \(\frac{16}{27}R^3\pi\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време