Пријемни испит
Број поена
Електротехнички,Природно Математички и Фармацеутски факултет
Ако су \(x_{1}\) и \(x_{2}\) решења квадратне једначине \(x^2+x+1=0\), тада су \(y_{1}=ax_{1}+x_{2}\) и \(y_{2}=x_{1}+ax_{2}\), \((a \in R)\), решења квадратне једначине:
Реалан део комплексног броја \( \frac{1}{2-\sqrt{5}+i\sqrt{3}}\) је:
Вредност израза \( \frac{1-tg^215^{\circ}}{1+tg^215^{\circ}}\) је:
Ако је \(a\in \mathbb{R}\) и \(\left | a+\frac{1}{a} \right |=3\) тада је \(\left | a-\frac{1}{a} \right |\) једнако:
Четири младића и четири девојке иду у биоскоп. Имају карте за места у истом реду који има тачно 8 седишта. На колико начина се могу распоредити ако је познато да две од девојака не желе да седа ни на првом ни на последњем месту.
Решење једначине \(2^{16^{x}}=16^{2^{x}}\) јесте:
Опадајућа аритметичка прогресија \((a_n)\) је таква да важи \(a_1^2 + a_2^2 + a_3^2 = 56\) и \(\frac{a_{10}}{a_2}=5\). Тада је \(a_{2014}\) једнако
Број реалиних решења једначине \(f(x)+f(f(x))=x\), где је \(f(x)=|x|+a\), \(a>0\) једнак је:
Укупан број реалних решења једначине \(\sqrt{3\cdot 2^{\log_{10}2x}+1}+\sqrt{2\cdot 2^{\log_{10}2x}+9}=\sqrt{13\cdot 2^{\log_{10}2x}-4}\) је:
Бројеви \(a, b, c\) су узастопни чланови растућег аритметичког низа, а бројеви \(a,b,c+1\) су узастопни бројеви геометријског низа. Ако је \(a+b+c=18\), онда је \(a^2+b^2+c^2\) једнако:
Који од датих интервала садржи сва решења једначине \(\frac{x-1}{\sqrt{x}+1}= 4+\frac{\sqrt{x}-1}{2}\)?
Која од наведених релација постоји између решења \(x_1\) и \(x_2\) квадратне једначине \((1+m)x^{2}-(6+5m)x+5+6m=0, (m\in \mathbb{R}, m\neq 1) ?\)
Ако је \(f(x − 1)=\frac{2x-1}{x+2}\) онда је \(f(f(x))\) једнако:
Нека је \(\DeclareMathOperator\tg{tg} \DeclareMathOperator\ctg{ctg} f_1(x)=1, f_2(x)= \tg{\frac{x}{2}}\ctg{\frac{x}{2}}\) и \(\DeclareMathOperator\tg{tg} \DeclareMathOperator\ctg{ctg} f_3(x)= \frac{|\sin x|}{\sqrt{1-\cos^2x}}\). Тачно је тврђење:
Скуп свих решења неједначине \(\frac{\left | 1-x \right |}{1-\left | x \right |}<\frac{1+\left | x \right |}{\left | 1+x \right |}\) је облика (за неке реалне бројеве \(a\) и \(b\) такве да је \(0 < a < b < + \infty ):\)
Једно од реалних решења једначине \(\log_{\cos{x}}\sin{x}=4\log_{\sin{x}}\cos{x}\) припада интервалу:
Број решења једначине \(\sin^2x+cosx+1=0\) на интервалу \((0, 4\pi)\) је:
Вредност израза \(\left ( \frac{\left ( -0,4 \right )^{3}}{\left ( -0,8 \right )^{3}}- \frac{\left ( -0,8 \right )^{3}}{\left ( -0,4 \right )^{3}} \right ):\left ( \frac{3}{4}-3 \right )\) једнака је:
Ако су \(A\) и \(B\) тачке на кругу \(x^2 + y^2 + 4x + 4y + 5 = 0\) најдаље и најближе тачки \(C(1, 2)\) онда је \(AC + BC\) једнако:
Прав ваљак и права купа имају заједничку основу. Врх купе је центар друге основе ваљка. Ако је однос висине ваљка и изводнице купе \(4:5\), тада је однос површина ваљка и купе једнак:
Тренутно нема података за приказ графикона!
Попуните образац за слање ваших резултата вашем наставнику.