Задаци

  • 1.      

    Ако је \(A=\frac{1}{6}\left((log_{2}{3})^3- (\log_{2}{6})^3-(\log_{2}{12})^3+(log_{2}{24})^3 \right)\), тада је вредност израза \(2^A\) једнака:

    \(36\)
    \(72\)
    \(64\)
    \(144\)
    \(1\)

    Провери одговоре Не знам

  • 2.      

    Ако је \(f \left( \frac{x+3}{x+1} \right)=3x+2\) за \(x \in R \backslash \{ -1 \}\), онда је \(f(5)\) једнако:

    5
    \(\frac{5}{2}\)
    \(\frac{1}{2}\)
    \(-\frac{1}{2}\)
    17

    Провери одговоре Не знам

  • 3.      

    Ако су \(\alpha\) и \(\beta\) решења једначине \(x^2-2x+5=0\), онда је \(\frac{​\alpha^2+\alpha \beta+ \beta^2}{\alpha^3+\beta^3}\) једнако:

    \(-\frac{1}{22}\)
    \(\frac{1}{22}\)
    \(\frac{1}{2}\)
    \(\frac{1}{11}\)
    \(-\frac{1}{2}\)

    Провери одговоре Не знам

  • 4.      

    Коефицијент уз \(x^{24}\) у развијеном облику степена бинома \((x^2-2x)^{13}\) је:

    78
    -78
    -312
    156
    312

    Провери одговоре Не знам

  • 5.      

    Прав ваљак и права купа имају заједничку основу. Врх купе је центар друге основе ваљка. Ако је однос висине ваљка и изводнице купе \(4:5\), тада је однос површина ваљка и купе једнак:

    \(4:3\)
    \(8:5\)
    \(7:5\)
    \(3:2\)
    \(7:4\)

    Провери одговоре Не знам

  • 6.      

    Укупан број реалних решења једначине \(3 tg^{2}x-8\cos^{2} x+1=0\) која пропадају интервалу \((0,2\pi )\) је:

    \(3 \)
    \(4 \)
    \(5 \)
    \(2 \)
    \(6 \)

    Провери одговоре Не знам

  • 7.      

    Вредност израза \(8\sin ^2 80^o-2\sqrt{3}\sin 40^o-2\cos 40^o\) једнака је:

    \(2\sqrt{3}\)
    \(2\)
    \(4\sqrt{3} \)
    \(4 \)
    \(1 \)

    Провери одговоре Не знам

  • 8.      

    Број решења једначине \(\sin^2x+cosx+1=0\) на интервалу \((0, 4\pi)\) је:

    3
    4
    1
    2
    0

    Провери одговоре Не знам

  • 9.      

    Ако су \(x_{1}\) и \(x_{2}\) решења квадратне једначине \(x^2+x+1=0\), тада су \(y_{1}=ax_{1}+x_{2}\) и \(y_{2}=x_{1}+ax_{2}\), \((a \in R)\), решења квадратне једначине:

    \(y^{2}+(a^2+1)y+a^2-a+1=0\)
    \(y^{2}+(a+1)y-a^2+a+1=0\)
    \(y^{2}+(a^2+1)y+1=0\)
    ниједан од понуђених одговора
    \(y^{2}+(a+1)y+a^2-a+1=0\)

    Провери одговоре Не знам

  • 10.      

    Једно од реалних решења једначине \(\log_{\cos{x}}\sin{x}=4\log_{\sin{x}}\cos{x}\) припада интервалу:

    \(\left(\frac{\pi}{3}, \frac{\pi}{2} \right)\)
    \(\left(\frac{\pi}{4}, \frac{\pi}{3} \right]\)
    \(\left(0, \frac{\pi}{6} \right]\)
    \(\left(\frac{\pi}{6}, \frac{\pi}{4} \right]\)
    \(\left[\frac{5\pi}{6}, \pi \right)\)

    Провери одговоре Не знам

  • 11.      

    Ако се зна да је полином \(x^{3}+ax^{2}+bx-4, (a,b\in \mathbb{R})\) дељив полиномом \(x^{2}-1 \), тада збир \(a^{2}+ b ^{2}\) износи:

    \(17 \)
    \(14 \)
    \(5 \)
    \(3 \)
    \(1 \)

    Провери одговоре Не знам

  • 12.      

    Ако је \(a\in \mathbb{R}\) и \(\left | a+\frac{1}{a} \right |=3\) тада је \(\left | a-\frac{1}{a} \right |\) једнако:

    \(\sqrt{5} \)
    \(0 \)
    \(\sqrt{3} \)
    \(\sqrt{2} \)
    \(\sqrt{7} \)

    Провери одговоре Не знам

  • 13.      

    Четири младића и четири девојке иду у биоскоп. Имају карте за места у истом реду који има тачно 8 седишта. На колико начина се могу распоредити ако је познато да две од девојака не желе да седа ни на првом ни на последњем месту. 
     

     

    \(2\cdot 6!\)  
    \(\frac{(8!)^2}{2}\)
    \(\frac{8!}{4!}\)
    \(30\cdot 6!\)
    \(15\cdot 6!\)

    Провери одговоре Не знам

  • 14.      

    Број \((1 + i\sqrt{3})^n\) је реалан ако и само ако ( \(k\) је цео број):

    \(n = 3k + 2\)
    \(n = 3k + 1\)
    \(n = 6k\)
    \(n = 3k\)
    \(n = 2k\)  

    Провери одговоре Не знам

  • 15.      

    Ако је \(N\) број шестоцифрених бројева који у свом запису садрже цифру 1 бар на једном месту, тада \(N\) припада интервалу:

    \([4 \cdot 10^5, 5 \cdot 10^5)\)
    \([5 \cdot 10^5, 6 \cdot 10^5)\)
    \([10^5, 2 \cdot 10^5)\)
    \([2 \cdot 10^5, 3 \cdot 10^5)\)
    \([3 \cdot 10^5, 4 \cdot 10^5)\)

    Провери одговоре Не знам

  • 16.      

    Ако је \(f(x − 1)=\frac{2x-1}{x+2}\) онда је \(f(f(x))\)  једнако:

     

     \(\frac{2x+1}{x+3}\)
    \(\frac{2x-1}{x+2}\)
    \(1\)
    \(\frac{5x+3}{5x+1}\)  
    \(\frac{x+1}{x+2}\)  

    Провери одговоре Не знам

  • 17.      

    У једнакокраком \(ABC\) троуглу је \(AB=BC=b\), \(AC=a\) и \(\sphericalangle ABC=20^{\circ}\). тада је израз \(\frac{a^2}{b^2}+\frac{b}{a}\) једнак:

    \(2\)
    \(\frac{3}{2}\)
    \(3\)
    \(\frac{5}{2}\)
    \(1\)

    Провери одговоре Не знам

  • 18.      

    Скуп решења неједначине \(2\ln(1-x)-\ln(2x+6) \leq 0\) је:

    \([-2,1)\)
    \([-1,1)\)
    \((-3,5]\)
    \((-3,1)\)
    \([-1,5]\)

    Провери одговоре Не знам

  • 19.      

    На колико начина се у ред могу поређати 5 ученика и 2 ученице, тако да ученице не стоје једна до друге?

    \(3600 \)
    \(240\)
    \(2400 \)
    \(250 \)
    \(7680 \)

    Провери одговоре Не знам

  • 20.      

    Дата је аритметичка прогресија \(a_{1},a_{2},a_{3},\dots\) чија је разлика \(d=1\), а збир првих \(98\) чланова \(a_{1}+a_{2}+ \cdots+a_{98}=137\). Тада је збир \(a_{2}+a_{4}+a_{6}+ \cdots+a_{98}\) једнак:

    \(88\)
    \(103\)
    \(93\)
    \(141\)
    \(127\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време