Пријемни испит
Број поена
Електротехнички,Природно Математички и Фармацеутски факултет
Вредност израза \(8\sin ^2 80^o-2\sqrt{3}\sin 40^o-2\cos 40^o\) једнака је:
Ако је \(a\in \mathbb{R}\) и \(\left | a+\frac{1}{a} \right |=3\) тада је \(\left | a-\frac{1}{a} \right |\) једнако:
Број реалиних решења једначине \(f(x)+f(f(x))=x\), где је \(f(x)=|x|+a\), \(a>0\) једнак је:
Укупан број парова \((x,y)\) целих бројева таквих да важи \(|x^2-2x|-y<\frac{1}{2}\) и \(y+|x-1|<2\) је:
Збир свих целих бројева који задовољавају једначину \(\frac{x}{x+2} \leq \frac{1}{1-x}\) је:
Ако је \(f(x − 1)=\frac{2x-1}{x+2}\) онда је \(f(f(x))\) једнако:
Укупан број дијагонала правилног десетоугла је:
Највећа вредност функције \(f(x) = |2x + 1| + |x − 3| − |5x − 4|\) , \(x \in R\) је:
Коефицијент уз \(x^{24}\) у развијеном облику степена бинома \((x^2 − 2x)^{13}\) је:
Ако је \(f(\frac{x+3}{x+1})=3x+2\) за \(x \in R \setminus\{ -1\}\), онда је \(f(5)\) једнако:
Укупан број реалних решења једначине \(\sqrt{3\cdot 2^{\log_{10}2x}+1}+\sqrt{2\cdot 2^{\log_{10}2x}+9}=\sqrt{13\cdot 2^{\log_{10}2x}-4}\) је:
Сва реална решења једначине \(\frac{x+\sqrt{3}}{\sqrt{3}+\sqrt{x+\sqrt{3}}}+\frac{x-\sqrt{3}}{\sqrt{3}-\sqrt{x-\sqrt{3}}}=\sqrt{x}\) налазе се у скупу:
Ако права \(y = 2x + p\) у равни \(Oxy ( p \in R )\) додирује параболу \(y = x^2 − x\), онда \(p\) припада интервалу:
Максимална запремина ваљка уписаног у лопту полупречника \(R\) је:
Ако су \(\alpha\) и \(\beta\) решења једначине \(x^2-2x+5=0\), онда је \(\frac{\alpha^2+\alpha \beta+ \beta^2}{\alpha^3+\beta^3}\) једнако:
Ако за дијагонале ромба важи једнакост \(d_1=(2-\sqrt{3})d_2\), тада је оштар угао ромба једнак:
Дата је аритметичка прогресија \(a_{1},a_{2},a_{3},\dots\) чија је разлика \(d=1\), а збир првих \(98\) чланова \(a_{1}+a_{2}+ \cdots+a_{98}=137\). Тада је збир \(a_{2}+a_{4}+a_{6}+ \cdots+a_{98}\) једнак:
Бројеви \(a, b, c\) су узастопни чланови растућег аритметичког низа, а бројеви \(a,b,c+1\) су узастопни бројеви геометријског низа. Ако је \(a+b+c=18\), онда је \(a^2+b^2+c^2\) једнако:
За коју вредност реалног параметра \(m\) израз \(x_1^3 + x_2^3\), где су \(x_1\) и \(x_2\) решења квадратне једначине \(x^2 − x + m^2 + 2m − 3 = 0\), узима максималну вредност?
Унутрашљи углови конвексног петоугла односе се као 3 : 4 : 5 : 7 : 8. Разлика највећег и најмањег од тих углова је:
Тренутно нема података за приказ графикона!
Попуните образац за слање ваших резултата вашем наставнику.