Задаци

  • 1.      

    Ако права \(y = 2x + p\) у равни \(Oxy ( p \in R )\) додирује параболу \(y = x^2 − x\), онда \(p\) припада интервалу:

     

    \([−4, −2)\)   
    \([−8, −4)\)
    \([2, 4]\)
    \([−10, −8)\)  
    \([−2, 2)\)  

    Провери одговоре Не знам

  • 2.      

    Укупан број дијагонала правилног десетоугла је:

    \(  15 \)
    \(  35 \)
    \(  25 \)
    \(  30 \)
    \(  20 \)

    Провери одговоре Не знам

  • 3.      

    Збир првих 2012 чланова аритметичке прогресије \(\frac{2011}{2012}, \frac{2010}{2012}, \frac{2009}{2012}, \cdots \) износи:

    Ни један од понуђених одговора
    \(\frac{2013}{4} \)
    \(\frac{2011}{4} \)
    \(\frac{2013}{2} \)
    \(\frac{2011}{2} \)

    Провери одговоре Не знам

  • 4.      

    У једнакокраком \(ABC\) троуглу је \(AB=BC=b\), \(AC=a\) и \(\sphericalangle ABC=20^{\circ}\). тада је израз \(\frac{a^2}{b^2}+\frac{b}{a}\) једнак:

    \(1\)
    \(3\)
    \(2\)
    \(\frac{3}{2}\)
    \(\frac{5}{2}\)

    Провери одговоре Не знам

  • 5.      

    Коефицијент уз \(x^{24}\) у развијеном облику степена бинома \((x^2-2x)^{13}\) је:

    -312
    156
    312
    78
    -78

    Провери одговоре Не знам

  • 6.      

    Која од наведених релација постоји између решења \(x_1\) и \(x_2\) квадратне једначине \((1+m)x^{2}-(6+5m)x+5+6m=0, (m\in \mathbb{R}, m\neq 1) ?\)

    \(-x_1x_2+x_1+x_2+2=0 \)
    \(4 x_1x_2+x_1+x_2=2 \)
    \(-x_1x_2+x_1+x_2-4=0 \)
    \(3x_1x_2+x_1+x_2-1=0 \)
    \(x_1x_2+x_1+x_2-11=0 \)

    Провери одговоре Не знам

  • 7.      

    Скуп свих реалних вредности за које важи неједнакост \(|4^{3x}-2^{4x+2}\cdot3^{x+1}+20\cdot12^x\cdot3^x|\geq8\cdot6^x(8^{x-1}+6^x)\) је облика (за неке реалне бројеве \(a, b, c\) и \(d\) такве да је \(-\infty<a<b<c<d<\infty\)):

    \((-\infty,a]\cup(b,c)\)
    \((-\infty,a)\cup(d,+\infty)\)
    \((-\infty,a)\cup[b,c)\)
    \((-\infty,a]\cup[b,c]\cup[d,+\infty)\)
    \((a,b)\cup\{c\}\)

    Провери одговоре Не знам

  • 8.      

    Коефицијент уз \(x^{24}\) у развијеном облику степена бинома \((x^2 − 2x)^{13}\) је:

    \(78\)
    \(-78\)  
    \(312\)
    \(-312\)            
    \(156\)  

    Провери одговоре Не знам

  • 9.      

    Нека је \(\DeclareMathOperator\tg{tg} \DeclareMathOperator\ctg{ctg} f_1(x)=1, f_2(x)= \tg{\frac{x}{2}}\ctg{\frac{x}{2}}\) и \(\DeclareMathOperator\tg{tg} \DeclareMathOperator\ctg{ctg} f_3(x)= \frac{|\sin x|}{\sqrt{1-\cos^2x}}\). Тачно је тврђење:

    све функције су једнаке међу собом
    \(f_1=f_3 \neq f_2\)
    међу датим функцијама нема једнаких
    \(f_1=f_2 \neq f_3\)
    \(f_1 \neq f_2 = f_3\)

    Провери одговоре Не знам

  • 10.      

    Ако је \(a=\log_{2}3\) и \(b=\log_{5}2 \), тада је \(\log_{24}50\) једнако:

    \(\frac{2+b}{b(a+3)} \)
    \(\frac{1+b}{b(a+4)} \)
    \(\frac{b-2}{(b+1)(a+3)} \)
    \(\frac{1+b}{b(a+3)} \)
    \(\frac{-2+b}{b(a-4)} \)

    Провери одговоре Не знам

  • 11.      

    Ако график функције \(y=\frac{1}{x^2-ax+2}\) садржи тачку \(M\left( -3, \frac{1}{19} \right)\) онда је највећа вредност функције једнака:

    \(\frac{1}{2}\)
    \(4\)
    \(\frac{9}{2}\)
    \(\frac{3}{22}\)
    \(\frac{3}{10}\)

    Провери одговоре Не знам

  • 12.      

    Странице троугла су \(21\) и \(9\sqrt{2} ,\) а њима захваћени угао \(45^o .\) Збир полупречника уписаног и описаног круга тог троугла је:

    \(6(\sqrt{2}+1) \)
    \(6(\sqrt{3}+2) \)
    \(3(-\sqrt{3}+2) \)
    \(6(\sqrt{2}-1) \)
    \(6(\sqrt{3}-\sqrt{2}) \)

    Провери одговоре Не знам

  • 13.      

    Вредност израза \(\left( 1-sin\frac{\pi}{8} \right)\left( 1+sin\frac{\pi}{8} \right)\) је:

    \(\frac{2-\sqrt{2}}{4}\)
    \(\frac{\sqrt{2}}{4}\)
    \(\frac{\sqrt{2}}{8}\)
    \(\frac{1}{4}\)
    \(\frac{2+\sqrt{2}}{4}\)

    Провери одговоре Не знам

  • 14.      

    Ако је \(k \in R\), \(i^{2}=-1\), тада је могудо комплексног броја \(\left(\frac{1+i}{1-i}\right)^{2015}+\frac{-1+5ki}{3i}-1\) најмањи за \(k\) једнако:

    \(\frac{3}{5}\)
    \(\frac{1}{3}\)
    \(3\)
    \(0\)
    \(-\frac{1}{2}\)

    Провери одговоре Не знам

  • 15.      

    Збир свих целих бројева који задовољавају једначину \(\frac{x}{x+2} \leq \frac{1}{1-x}\)  је:

    бесконачан
     \(1\)  
    \(−1\)
    \(−2\)    
    \(0\)

    Провери одговоре Не знам

  • 16.      

    Последња цифра броја \(7^{2009}\) је:

    9
    7
    3
    1
    5

    Провери одговоре Не знам

  • 17.      

    Најмања вредност функције \(f(x)=4x+\frac{9\pi ^{2}}{x}+\sin x, x>0\) је:
     

    \(\frac{5\pi}{2}\)
    \(\frac{\pi^2-1}{2} \)
    \(12\pi -1 \)
    \(3\pi +1 \)
    \(5\pi +2 \)

    Провери одговоре Не знам

  • 18.      

    Око кружнице полупречника \(2cm\) описан је једнакокраки трапез површине \(20cm^2\). Дужина његовог крака је:

     

     такав трапез не постоји
    \(20cm\)
    \(6cm\)
    \(5cm\)  
    \(10cm\)      

    Провери одговоре Не знам

  • 19.      

    Кружница пролази кроз крајње тачке једне странице квадрата и кроз средиште наспрамне странице. Ако је страница квадрата дужине \(a\), онда је пречник кружнице једнак: 

    \(\frac{5a}{4}\)
     \(\frac{3a}{2}\)  
    \(\frac{a+1}{a}\)
    \(\frac{3a}{\sqrt{2}}\)  
    \(\frac{\sqrt{5}a}{4}\)

    Провери одговоре Не знам

  • 20.      

    Ако је \(f(x − 1)=\frac{2x-1}{x+2}\) онда је \(f(f(x))\)  једнако:

     

    \(\frac{x+1}{x+2}\)  
    \(1\)
    \(\frac{2x-1}{x+2}\)
     \(\frac{2x+1}{x+3}\)
    \(\frac{5x+3}{5x+1}\)  

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време