Задаци

  • 1.      

    Ако се зна да \(\frac{14}{9}\) биномног коефицијента трећег члана, биномни коефицијент четвртог члана и биномни коефицијент петог члана у развоју бинома \(\left( \sqrt[3]{x}+\frac{1}{\sqrt{x}} \right)^n\)\((n \in N, x>0)\), чине геометријску прогресију, тада је биномни коефицијент уз \(\sqrt{x}\) једнак:

    \(1\)
    \(48\)
    \(5\)
    \(21\)
    \(84\)

    Провери одговоре Не знам

  • 2.      

    Збир свих целих бројева који задовољавају једначину \(\frac{x}{x+2} \leq \frac{1}{1-x}\)  је:

    \(0\)
     \(1\)  
    бесконачан
    \(−2\)    
    \(−1\)

    Провери одговоре Не знам

  • 3.      

    Једначина круга чији је центар тачка пресека правих \(x-2y+4=0\) и \(3x+y-9=0\), а који додирује праву \(3x+4y+2 \) гласи:

    \(x^{2}-4x+y^{2}-6y-3=0 \)
    \(x^{2}-4x+y^{2}-6y-2=0 \)
    \(x^{2}-4x+y^{2}-6y-1=0 \)
    \(x^{2}-4x+y^{2}-6y+1=0 \)
    \(x^{2}-4x+y^{2}-6y=0 \)

    Провери одговоре Не знам

  • 4.      

    Ако су \(x_{1}\) и \(x_{2}\) решења квадратне једначине \(x^2+x+1=0\), тада су \(y_{1}=ax_{1}+x_{2}\) и \(y_{2}=x_{1}+ax_{2}\), \((a \in R)\), решења квадратне једначине:

    \(y^{2}+(a^2+1)y+a^2-a+1=0\)
    \(y^{2}+(a+1)y-a^2+a+1=0\)
    ниједан од понуђених одговора
    \(y^{2}+(a+1)y+a^2-a+1=0\)
    \(y^{2}+(a^2+1)y+1=0\)

    Провери одговоре Не знам

  • 5.      

    Највећа могућа запремина праве купе чија изводница има дужину \(s\) је: 

    \(\frac{2\pi s^3\sqrt{3}}{27}\)
     \(\frac{2\pi s^3\sqrt{2}}{27}\)
    \(\frac{\pi s^3\sqrt{3}}{27}\)  
    \(\frac{4\pi s^3\sqrt{3}}{27}\)  
    \(\frac{\pi s^3\sqrt{3}}{9}\)  

    Провери одговоре Не знам

  • 6.      

    Aко је \(f(x)=x^3-3x\) и \(g(x)=\sin \frac{\pi }{12}x\) тада је \(f(g(2))\) једнако:

    \(-\frac{11}{2} \)
    \(-\frac{11}{8} \)
    \(0 \)
    \(\frac{11}{8}\)
    \(\frac{11}{2} \)

    Провери одговоре Не знам

  • 7.      

    Максимална запремина ваљка уписаног у лопту полупречника \(R\) је:

    \(\frac{1}{\sqrt{2}}R^3\pi\)
    \(\frac{2}{3\sqrt{3}}R^3\pi\)
    \(\frac{4}{3\sqrt{3}}R^3\pi\)
    \(\frac{2}{3}R^3\pi\)
    \(\frac{16}{27}R^3\pi\)

    Провери одговоре Не знам

  • 8.      

    Ако се зна да је полином \(x^{3}+ax^{2}+bx-4, (a,b\in \mathbb{R})\) дељив полиномом \(x^{2}-1 \), тада збир \(a^{2}+ b ^{2}\) износи:

    \(1 \)
    \(14 \)
    \(5 \)
    \(17 \)
    \(3 \)

    Провери одговоре Не знам

  • 9.      

    Једно од реалних решења једначине \(\log_{\cos{x}}\sin{x}=4\log_{\sin{x}}\cos{x}\) припада интервалу:

    \(\left(0, \frac{\pi}{6} \right]\)
    \(\left(\frac{\pi}{4}, \frac{\pi}{3} \right]\)
    \(\left[\frac{5\pi}{6}, \pi \right)\)
    \(\left(\frac{\pi}{3}, \frac{\pi}{2} \right)\)
    \(\left(\frac{\pi}{6}, \frac{\pi}{4} \right]\)

    Провери одговоре Не знам

  • 10.      

    Бројеви \(a, b, c\) су узастопни чланови растућег аритметичког низа, а бројеви \(a,b,c+1\) су узастопни бројеви геометријског низа. Ако је \(a+b+c=18\), онда је \(a^2+b^2+c^2\) једнако:

    140
    126
    109
    116
    133

    Провери одговоре Не знам

  • 11.      

    Кружница пролази кроз крајње тачке једне странице квадрата и кроз средиште наспрамне странице. Ако је страница квадрата дужине \(a\), онда је пречник кружнице једнак: 

     \(\frac{3a}{2}\)  
    \(\frac{5a}{4}\)
    \(\frac{3a}{\sqrt{2}}\)  
    \(\frac{\sqrt{5}a}{4}\)
    \(\frac{a+1}{a}\)

    Провери одговоре Не знам

  • 12.      

    Средиште горње основе коцке и средишта ивица њене доње основе су темена пирамиде. Ако је ивица коцке \(2cm\), површина омотача пирамиде је:

    \(9{cm}^2\)
    \(6{cm}^2\)
    \(4\sqrt{2}{cm}^2\)
    \(4\sqrt{3}{cm}^2\)
    \(3\sqrt{2}{cm}^2\)

    Провери одговоре Не знам

  • 13.      

    Странице троугла су \(21\) и \(9\sqrt{2} ,\) а њима захваћени угао \(45^o .\) Збир полупречника уписаног и описаног круга тог троугла је:

    \(6(\sqrt{3}-\sqrt{2}) \)
    \(3(-\sqrt{3}+2) \)
    \(6(\sqrt{3}+2) \)
    \(6(\sqrt{2}+1) \)
    \(6(\sqrt{2}-1) \)

    Провери одговоре Не знам

  • 14.      

    Укупан број парова \((x,y)\) целих бројева таквих да важи \(|x^2-2x|-y<\frac{1}{2}\) и \(y+|x-1|<2\) је:

    \(0\)
    \(2\)
    \(1\)
    \(3\)
    \(4\)

    Провери одговоре Не знам

  • 15.      

    Број решења једначине \(\sin^2x+cosx+1=0\) на интервалу \((0, 4\pi)\) је:

    3
    2
    1
    4
    0

    Провери одговоре Не знам

  • 16.      

    Око кружнице полупречника \(2cm\) описан је једнакокраки трапез површине \(20cm^2\). Дужина његовог крака је:

     

     такав трапез не постоји
    \(5cm\)  
    \(20cm\)
    \(10cm\)      
    \(6cm\)

    Провери одговоре Не знам

  • 17.      

    Коефицијент уз \(x^{24}\) у развијеном облику степена бинома \((x^2 − 2x)^{13}\) је:

    \(-78\)  
    \(-312\)            
    \(156\)  
    \(78\)
    \(312\)

    Провери одговоре Не знам

  • 18.      

    Вредност израза \( \frac{1-tg^215^{\circ}}{1+tg^215^{\circ}}\) је:

    \(\frac{\sqrt{3}}{2}\)  
    \(1\)
    \(\frac{1}{2}\)
    \(-\frac{2}{\sqrt{3}}\)
    \(\sqrt{3}\)

    Провери одговоре Не знам

  • 19.      

    Најкраће растојање између правих \(\sqrt{2}x+y=1\) и \(2x+\sqrt{2}y=3\sqrt{2}\) једнако је:

    \(\frac{\sqrt{6}}{6}\)
    \(\sqrt{2}\)
    \(2\)
    \(0\)
    \(\frac{2}{3}\sqrt{3}\)

    Провери одговоре Не знам

  • 20.      

    Тангента криве \(y=e^{-x} (x>-1)\), сече координатне осе у тачкама \(A\) и \(B\). Ако је \(O\) координатни почетак, максимална површина троугла \(AOB\) износи:

    \(2e\)
    \(\frac{3}{e}\)
    \(\frac{1}{e}\)
    \(\frac{2}{e}\)
    \(e\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време