Задаци

  • 1.      

    Четири младића и четири девојке иду у биоскоп. Имају карте за места у истом реду који има тачно 8 седишта. На колико начина се могу распоредити ако је познато да две од девојака не желе да седа ни на првом ни на последњем месту. 
     

     

    \(\frac{8!}{4!}\)
    \(15\cdot 6!\)
    \(\frac{(8!)^2}{2}\)
    \(2\cdot 6!\)  
    \(30\cdot 6!\)

    Провери одговоре Не знам

  • 2.      

    Укупан број парова \((x,y)\) целих бројева таквих да важи \(|x^2-2x|-y<\frac{1}{2}\) и \(y+|x-1|<2\) је:

    \(1\)
    \(4\)
    \(3\)
    \(2\)
    \(0\)

    Провери одговоре Не знам

  • 3.      

    Нека је \(\DeclareMathOperator\tg{tg} \DeclareMathOperator\ctg{ctg} f_1(x)=1, f_2(x)= \tg{\frac{x}{2}}\ctg{\frac{x}{2}}\) и \(\DeclareMathOperator\tg{tg} \DeclareMathOperator\ctg{ctg} f_3(x)= \frac{|\sin x|}{\sqrt{1-\cos^2x}}\). Тачно је тврђење:

    све функције су једнаке међу собом
    међу датим функцијама нема једнаких
    \(f_1=f_3 \neq f_2\)
    \(f_1 \neq f_2 = f_3\)
    \(f_1=f_2 \neq f_3\)

    Провери одговоре Не знам

  • 4.      

    Сва реална решења једначине \(\frac{x+\sqrt{3}}{\sqrt{3}+\sqrt{x+\sqrt{3}}}+\frac{x-\sqrt{3}}{\sqrt{3}-\sqrt{x-\sqrt{3}}}=\sqrt{x}\) налазе се у скупу:

    \([3\sqrt{3},6)\)
    \((2\sqrt{3},3\sqrt{3})\)
    \([6,8)\)
    \([\sqrt{3},2\sqrt{3})\)
    \(\emptyset\)

    Провери одговоре Не знам

  • 5.      

    Која од наведених релација постоји између решења \(x_1\) и \(x_2\) квадратне једначине \((1+m)x^{2}-(6+5m)x+5+6m=0, (m\in \mathbb{R}, m\neq 1) ?\)

    \(x_1x_2+x_1+x_2-11=0 \)
    \(-x_1x_2+x_1+x_2+2=0 \)
    \(-x_1x_2+x_1+x_2-4=0 \)
    \(3x_1x_2+x_1+x_2-1=0 \)
    \(4 x_1x_2+x_1+x_2=2 \)

    Провери одговоре Не знам

  • 6.      

    Ако је \(k \in Z\) и \(0,0010101 \cdot 10^{k}>1001\), која је намања могућа вредност за \(k\)?

    \(6\)
    \(-6\)
    \(0\)
    \(-5\)
    \(5\)

    Провери одговоре Не знам

  • 7.      

    Скуп свих реалних вредности за које важи неједнакост \(|4^{3x}-2^{4x+2}\cdot3^{x+1}+20\cdot12^x\cdot3^x|\geq8\cdot6^x(8^{x-1}+6^x)\) је облика (за неке реалне бројеве \(a, b, c\) и \(d\) такве да је \(-\infty<a<b<c<d<\infty\)):

    \((-\infty,a)\cup[b,c)\)
    \((-\infty,a)\cup(d,+\infty)\)
    \((-\infty,a]\cup[b,c]\cup[d,+\infty)\)
    \((a,b)\cup\{c\}\)
    \((-\infty,a]\cup(b,c)\)

    Провери одговоре Не знам

  • 8.      

    Вредност израза \( \frac{1-tg^215^{\circ}}{1+tg^215^{\circ}}\) је:

    \(\frac{1}{2}\)
    \(\sqrt{3}\)
    \(1\)
    \(\frac{\sqrt{3}}{2}\)  
    \(-\frac{2}{\sqrt{3}}\)

    Провери одговоре Не знам

  • 9.      

    Укупан број реалних решења једначине \(3 tg^{2}x-8\cos^{2} x+1=0\) која пропадају интервалу \((0,2\pi )\) је:

    \(5 \)
    \(4 \)
    \(6 \)
    \(3 \)
    \(2 \)

    Провери одговоре Не знам

  • 10.      

    Ако права \(y = 2x + p\) у равни \(Oxy ( p \in R )\) додирује параболу \(y = x^2 − x\), онда \(p\) припада интервалу:

     

    \([−10, −8)\)  
    \([2, 4]\)
    \([−8, −4)\)
    \([−2, 2)\)  
    \([−4, −2)\)   

    Провери одговоре Не знам

  • 11.      

    Ако је \(f \left( \frac{x+3}{x+1} \right)=3x+2\) за \(x \in R \backslash \{ -1 \}\), онда је \(f(5)\) једнако:

    17
    5
    \(-\frac{1}{2}\)
    \(\frac{5}{2}\)
    \(\frac{1}{2}\)

    Провери одговоре Не знам

  • 12.      

    Правилна четворострана призма пресечена је са равни која садржи основну ивицу призме. Ако је површина пресека равни призме два пута већи од површине базе, тада је угао између те равни и базе призме једнак:

    \(60^o \)
    \(75^o \)
    \(30^o \)
    \(45^o \)
    \(15^o \)

    Провери одговоре Не знам

  • 13.      

    Коефицијент уз \(x^{24}\) у развијеном облику степена бинома \((x^2 − 2x)^{13}\) је:

    \(312\)
    \(-312\)            
    \(78\)
    \(-78\)  
    \(156\)  

    Провери одговоре Не знам

  • 14.      

    Опадајућа аритметичка прогресија \((a_n)\) је таква да важи \(a_1^2  + a_2^2  + a_3^2  = 56\)  и \(\frac{a_{10}}{a_2}=5\). Тада је \(a_{2014}\) једнако

    \(4030\)
    \(4028\)      
    таква прогресија не постоји 
    \(−4028\)
    \(−4030\)

    Провери одговоре Не знам

  • 15.      

    Растојање координатног почетка \(O\) правоуглог координатног система \(xOy\) од праве задате једначином \(y=3x+5\) је:

    \(\frac{\sqrt{10}}{2}\)
    \(\frac{\sqrt{10}}{3}\)
    \(\frac{\sqrt{5}}{2}\)
    \(\frac{3}{2}\)
    \(\frac{\sqrt{5}}{3}\)

    Провери одговоре Не знам

  • 16.      

    Скуп свих решења неједначине \(\frac{\left | 1-x \right |}{1-\left | x \right |}<\frac{1+\left | x \right |}{\left | 1+x \right |}\) је облика (за неке реалне бројеве \(a\) и \(b\) такве да је \(0 < a < b < + \infty ):\)

    \((-\infty, -a) \cup (-a, a ) \cup (a, +\infty ) \)
    \((-\infty, -a) \)
    \((-b, -a) \cup (a, b) \)
    \((a, +\infty ) \)
    \((-\infty, -a) \cup (a, +\infty ) \)

    Провери одговоре Не знам

  • 17.      

    У једнакокраком \(ABC\) троуглу је \(AB=BC=b\), \(AC=a\) и \(\sphericalangle ABC=20^{\circ}\). тада је израз \(\frac{a^2}{b^2}+\frac{b}{a}\) једнак:

    \(\frac{5}{2}\)
    \(2\)
    \(3\)
    \(\frac{3}{2}\)
    \(1\)

    Провери одговоре Не знам

  • 18.      

    Скуп решења неједначине \(2\ln(1-x)-\ln(2x+6) \leq 0\) је:

    \([-2,1)\)
    \([-1,1)\)
    \((-3,5]\)
    \((-3,1)\)
    \([-1,5]\)

    Провери одговоре Не знам

  • 19.      

    Дата је аритметичка прогресија \(a_{1},a_{2},a_{3},\dots\) чија је разлика \(d=1\), а збир првих \(98\) чланова \(a_{1}+a_{2}+ \cdots+a_{98}=137\). Тада је збир \(a_{2}+a_{4}+a_{6}+ \cdots+a_{98}\) једнак:

    \(93\)
    \(88\)
    \(141\)
    \(127\)
    \(103\)

    Провери одговоре Не знам

  • 20.      

    Једна катета правоуглог троугла је \(8cm\), а хипотенуза је \(17cm\). Полупречник уписаног круга тог троугла је:

    2cm
    3cm
    3,5cm
    4cm
    2,5cm

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време