Задаци

  • 1.      

    Број \({\left( 1+i \sqrt{3}\right)}^n\), где је \(i^2=-1\), је реалан ако и само ако за неки цео број \(k\) важи:

    \(n=3k\)
    \(n=2k\)
    \(n=6k\)
    \(n=3k+2\)
    \(n=3k+1\)

    Провери одговоре Не знам

  • 2.      

    За коју вредност реалног параметра \(m\) израз \(x_1^3  + x_2^3\), где су \(x_1\) и  \(x_2\) решења квадратне једначине \(x^2 − x + m^2 + 2m − 3 = 0\), узима максималну вредност?
     

    \(2\)
    \(0\)  
    \(2\) 
    \(−1\) 
    \(1\)

    Провери одговоре Не знам

  • 3.      

    Ако су \(x_{1}\) и \(x_{2}\) решења квадратне једначине \(x^2+x+1=0\), тада су \(y_{1}=ax_{1}+x_{2}\) и \(y_{2}=x_{1}+ax_{2}\), \((a \in R)\), решења квадратне једначине:

    ниједан од понуђених одговора
    \(y^{2}+(a^2+1)y+a^2-a+1=0\)
    \(y^{2}+(a+1)y+a^2-a+1=0\)
    \(y^{2}+(a^2+1)y+1=0\)
    \(y^{2}+(a+1)y-a^2+a+1=0\)

    Провери одговоре Не знам

  • 4.      

    Ако се зна да \(\frac{14}{9}\) биномног коефицијента трећег члана, биномни коефицијент четвртог члана и биномни коефицијент петог члана у развоју бинома \(\left( \sqrt[3]{x}+\frac{1}{\sqrt{x}} \right)^n\)\((n \in N, x>0)\), чине геометријску прогресију, тада је биномни коефицијент уз \(\sqrt{x}\) једнак:

    \(48\)
    \(1\)
    \(5\)
    \(21\)
    \(84\)

    Провери одговоре Не знам

  • 5.      

    Једначина \(\sqrt{1-x}=-x\):

    нема решења
    има тачно једно решење и оно је позитивно
    има тачно два решења
    има више од два решења
    има тачно једно решење и оно је негативно

    Провери одговоре Не знам

  • 6.      

    Скуп решења неједначине \(2\ln(1-x)-\ln(2x+6) \leq 0\) је:

    \([-1,5]\)
    \([-1,1)\)
    \((-3,1)\)
    \([-2,1)\)
    \((-3,5]\)

    Провери одговоре Не знам

  • 7.      

    Ако је \(f \left( \frac{x+3}{x+1} \right)=3x+2\) за \(x \in R \backslash \{ -1 \}\), онда је \(f(5)\) једнако:

    \(\frac{1}{2}\)
    17
    5
    \(-\frac{1}{2}\)
    \(\frac{5}{2}\)

    Провери одговоре Не знам

  • 8.      

    Једна катета правоуглог троугла је \(8cm\), а хипотенуза је \(17cm\). Полупречник уписаног круга тог троугла је:

    3,5cm
    3cm
    4cm
    2cm
    2,5cm

    Провери одговоре Не знам

  • 9.      

    Број реалиних решења једначине \(f(x)+f(f(x))=x\), где је \(f(x)=|x|+a\)\(a>0\) једнак је:

    \(4\)
    \(0\)
    \(2\)
    \(3\)
    \(1\)

    Провери одговоре Не знам

  • 10.      

    Ако је \(f(x − 1)=\frac{2x-1}{x+2}\) онда је \(f(f(x))\)  једнако:

     

    \(1\)
    \(\frac{5x+3}{5x+1}\)  
    \(\frac{2x-1}{x+2}\)
     \(\frac{2x+1}{x+3}\)
    \(\frac{x+1}{x+2}\)  

    Провери одговоре Не знам

  • 11.      

    Унутрашљи углови конвексног петоугла односе се као 3 : 4 : 5 : 7 : 8. Разлика највећег и најмањег од тих углова је:

    60°
    40°
    80°
    120°
    100°

    Провери одговоре Не знам

  • 12.      

    Укупан број реалних решења једначине \(\sqrt{3\cdot 2^{\log_{10}2x}+1}+\sqrt{2\cdot 2^{\log_{10}2x}+9}=\sqrt{13\cdot 2^{\log_{10}2x}-4}\) је:

    \(0 \)
    \(1 \)
    Ниједан од понуђених одговора
    \(2 \)
    \(3 \)

    Провери одговоре Не знам

  • 13.      

    Број решења једначине \(\sin^2x+cosx+1=0\) на интервалу \((0, 4\pi)\) је:

    2
    3
    4
    1
    0

    Провери одговоре Не знам

  • 14.      

    Ако се зна да је полином \(x^{3}+ax^{2}+bx-4, (a,b\in \mathbb{R})\) дељив полиномом \(x^{2}-1 \), тада збир \(a^{2}+ b ^{2}\) износи:

    \(5 \)
    \(1 \)
    \(14 \)
    \(17 \)
    \(3 \)

    Провери одговоре Не знам

  • 15.      

    Најкраће растојање између правих \(\sqrt{2}x+y=1\) и \(2x+\sqrt{2}y=3\sqrt{2}\) једнако је:

    \(2\)
    \(0\)
    \(\sqrt{2}\)
    \(\frac{2}{3}\sqrt{3}\)
    \(\frac{\sqrt{6}}{6}\)

    Провери одговоре Не знам

  • 16.      

    Ако је \(A=\frac{1}{6}\left((log_{2}{3})^3- (\log_{2}{6})^3-(\log_{2}{12})^3+(log_{2}{24})^3 \right)\), тада је вредност израза \(2^A\) једнака:

    \(1\)
    \(144\)
    \(72\)
    \(64\)
    \(36\)

    Провери одговоре Не знам

  • 17.      

    Око кружнице полупречника \(2cm\) описан је једнакокраки трапез површине \(20cm^2\). Дужина његовог крака је:

     

    \(6cm\)
     такав трапез не постоји
    \(5cm\)  
    \(20cm\)
    \(10cm\)      

    Провери одговоре Не знам

  • 18.      

    Бројеви \(a, b, c\) су узастопни чланови растућег аритметичког низа, а бројеви \(a,b,c+1\) су узастопни бројеви геометријског низа. Ако је \(a+b+c=18\), онда је \(a^2+b^2+c^2\) једнако:

    116
    109
    126
    140
    133

    Провери одговоре Не знам

  • 19.      

    Максимална запремина ваљка уписаног у лопту полупречника \(R\) је:

    \(\frac{2}{3\sqrt{3}}R^3\pi\)
    \(\frac{4}{3\sqrt{3}}R^3\pi\)
    \(\frac{16}{27}R^3\pi\)
    \(\frac{1}{\sqrt{2}}R^3\pi\)
    \(\frac{2}{3}R^3\pi\)

    Провери одговоре Не знам

  • 20.      

    Знајући да је \(\cos\left({x-\frac{3\pi}{2}}\right)=-\frac{4}{5}\) и \(\frac{\pi}{2}<x<\pi\), тада је вредност израза \(\sin\frac{x}{2}\cos{\frac{5x}{2}}\) једнака:

    \(-\frac{38}{125}\)
    \(\frac{4}{125}\)
    \(1\)
    \(\frac{82}{125}\)
    \(-1\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време