Задаци

  • 1.      

    Број \((1 + i\sqrt{3})^n\) је реалан ако и само ако ( \(k\) је цео број):

    \(n = 3k + 1\)
    \(n = 3k\)
    \(n = 6k\)
    \(n = 2k\)  
    \(n = 3k + 2\)

    Провери одговоре Не знам

  • 2.      

    Која од наведених релација постоји између решења \(x_1\) и \(x_2\) квадратне једначине \((1+m)x^{2}-(6+5m)x+5+6m=0, (m\in \mathbb{R}, m\neq 1) ?\)

    \(x_1x_2+x_1+x_2-11=0 \)
    \(-x_1x_2+x_1+x_2+2=0 \)
    \(4 x_1x_2+x_1+x_2=2 \)
    \(3x_1x_2+x_1+x_2-1=0 \)
    \(-x_1x_2+x_1+x_2-4=0 \)

    Провери одговоре Не знам

  • 3.      

    Ако се зна да \(\frac{14}{9}\) биномног коефицијента трећег члана, биномни коефицијент четвртог члана и биномни коефицијент петог члана у развоју бинома \(\left( \sqrt[3]{x}+\frac{1}{\sqrt{x}} \right)^n\)\((n \in N, x>0)\), чине геометријску прогресију, тада је биномни коефицијент уз \(\sqrt{x}\) једнак:

    \(21\)
    \(84\)
    \(48\)
    \(5\)
    \(1\)

    Провери одговоре Не знам

  • 4.      

    На колико начина се у ред могу поређати 5 ученика и 2 ученице, тако да ученице не стоје једна до друге?

    \(240\)
    \(250 \)
    \(2400 \)
    \(3600 \)
    \(7680 \)

    Провери одговоре Не знам

  • 5.      

    Ако је \(a=\log_{2}3\) и \(b=\log_{5}2 \), тада је \(\log_{24}50\) једнако:

    \(\frac{1+b}{b(a+4)} \)
    \(\frac{1+b}{b(a+3)} \)
    \(\frac{-2+b}{b(a-4)} \)
    \(\frac{2+b}{b(a+3)} \)
    \(\frac{b-2}{(b+1)(a+3)} \)

    Провери одговоре Не знам

  • 6.      

    Ако су \(\alpha\) и \(\beta\) решења једначине \(x^2-2x+5=0\), онда је \(\frac{​\alpha^2+\alpha \beta+ \beta^2}{\alpha^3+\beta^3}\) једнако:

    \(\frac{1}{11}\)
    \(\frac{1}{22}\)
    \(-\frac{1}{22}\)
    \(\frac{1}{2}\)
    \(-\frac{1}{2}\)

    Провери одговоре Не знам

  • 7.      

    Ако је \(k \in R\), \(i^{2}=-1\), тада је могудо комплексног броја \(\left(\frac{1+i}{1-i}\right)^{2015}+\frac{-1+5ki}{3i}-1\) најмањи за \(k\) једнако:

    \(0\)
    \(3\)
    \(\frac{3}{5}\)
    \(-\frac{1}{2}\)
    \(\frac{1}{3}\)

    Провери одговоре Не знам

  • 8.      

    Ако за дијагонале ромба важи једнакост \(d_1=(2-\sqrt{3})d_2\), тада је оштар угао ромба једнак:

    \(60^{\circ}\)
    \(22,5^{\circ}\)
    \(15^{\circ}\)
    \(45^{\circ}\)
    \(30^{\circ}\)

    Провери одговоре Не знам

  • 9.      

    Правилна четворострана призма пресечена је са равни која садржи основну ивицу призме. Ако је површина пресека равни призме два пута већи од површине базе, тада је угао између те равни и базе призме једнак:

    \(45^o \)
    \(60^o \)
    \(30^o \)
    \(75^o \)
    \(15^o \)

    Провери одговоре Не знам

  • 10.      

    Растојање координатног почетка \(O\) правоуглог координатног система \(xOy\) од праве задате једначином \(y=3x+5\) је:

    \(\frac{3}{2}\)
    \(\frac{\sqrt{10}}{3}\)
    \(\frac{\sqrt{5}}{2}\)
    \(\frac{\sqrt{10}}{2}\)
    \(\frac{\sqrt{5}}{3}\)

    Провери одговоре Не знам

  • 11.      

    Једна катета правоуглог троугла је \(8cm\), а хипотенуза је \(17cm\). Полупречник уписаног круга тог троугла је:

    2cm
    3cm
    4cm
    2,5cm
    3,5cm

    Провери одговоре Не знам

  • 12.      

    Прав ваљак и права купа имају заједничку основу. Врх купе је центар друге основе ваљка. Ако је однос висине ваљка и изводнице купе \(4:5\), тада је однос површина ваљка и купе једнак:

    \(7:4\)
    \(8:5\)
    \(3:2\)
    \(7:5\)
    \(4:3\)

    Провери одговоре Не знам

  • 13.      

    Ако је \(k \in Z\) и \(0,0010101 \cdot 10^{k}>1001\), која је намања могућа вредност за \(k\)?

    \(5\)
    \(-5\)
    \(-6\)
    \(0\)
    \(6\)

    Провери одговоре Не знам

  • 14.      

    Који од датих интервала садржи сва решења једначине \(\frac{x-1}{\sqrt{x}+1}= 4+\frac{\sqrt{x}-1}{2}\)?

    \((−1, 1)\)
    \((24, 92]\)
    \([6, 10]\)
    \([1, 6)\)  
    \((10, 24]\)

    Провери одговоре Не знам

  • 15.      

    Ако је \(f \left( \frac{x+3}{x+1} \right)=3x+2\) за \(x \in R \backslash \{ -1 \}\), онда је \(f(5)\) једнако:

    17
    5
    \(\frac{1}{2}\)
    \(-\frac{1}{2}\)
    \(\frac{5}{2}\)

    Провери одговоре Не знам

  • 16.      

    Скуп свих решења неједначине \(\frac{\left | 1-x \right |}{1-\left | x \right |}<\frac{1+\left | x \right |}{\left | 1+x \right |}\) је облика (за неке реалне бројеве \(a\) и \(b\) такве да је \(0 < a < b < + \infty ):\)

    \((-b, -a) \cup (a, b) \)
    \((-\infty, -a) \)
    \((-\infty, -a) \cup (a, +\infty ) \)
    \((-\infty, -a) \cup (-a, a ) \cup (a, +\infty ) \)
    \((a, +\infty ) \)

    Провери одговоре Не знам

  • 17.      

    Коефицијент уз \(x^{24}\) у развијеном облику степена бинома \((x^2 − 2x)^{13}\) је:

    \(-78\)  
    \(156\)  
    \(312\)
    \(78\)
    \(-312\)            

    Провери одговоре Не знам

  • 18.      

    Број \({\left( 1+i \sqrt{3}\right)}^n\), где је \(i^2=-1\), је реалан ако и само ако за неки цео број \(k\) важи:

    \(n=3k+2\)
    \(n=3k\)
    \(n=6k\)
    \(n=3k+1\)
    \(n=2k\)

    Провери одговоре Не знам

  • 19.      

    Укупан број реалних решења једначине \(\sqrt{3\cdot 2^{\log_{10}2x}+1}+\sqrt{2\cdot 2^{\log_{10}2x}+9}=\sqrt{13\cdot 2^{\log_{10}2x}-4}\) је:

    \(3 \)
    \(0 \)
    Ниједан од понуђених одговора
    \(2 \)
    \(1 \)

    Провери одговоре Не знам

  • 20.      

    У једнакокраком \(ABC\) троуглу је \(AB=BC=b\), \(AC=a\) и \(\sphericalangle ABC=20^{\circ}\). тада је израз \(\frac{a^2}{b^2}+\frac{b}{a}\) једнак:

    \(1\)
    \(3\)
    \(\frac{3}{2}\)
    \(2\)
    \(\frac{5}{2}\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време