Задаци

  • 1.      

    Број парова \((p,q), p,q \in R\) таквих да је полином \(x^4+px^2+q\) дељив полиномом \(x^2+px+q\), једнак је:

    \(0\)
    \(4\)
    \(1\)
    \(5\)
    \(2\)

    Провери одговоре Не знам

  • 2.      

    Која од наведених релација постоји између решења \(x_1\) и \(x_2\) квадратне једначине \((1+m)x^{2}-(6+5m)x+5+6m=0, (m\in \mathbb{R}, m\neq 1) ?\)

    \(3x_1x_2+x_1+x_2-1=0 \)
    \(-x_1x_2+x_1+x_2+2=0 \)
    \(-x_1x_2+x_1+x_2-4=0 \)
    \(x_1x_2+x_1+x_2-11=0 \)
    \(4 x_1x_2+x_1+x_2=2 \)

    Провери одговоре Не знам

  • 3.      

    Максимална запремина ваљка уписаног у лопту полупречника \(R\) је:

    \(\frac{16}{27}R^3\pi\)
    \(\frac{1}{\sqrt{2}}R^3\pi\)
    \(\frac{2}{3\sqrt{3}}R^3\pi\)
    \(\frac{4}{3\sqrt{3}}R^3\pi\)
    \(\frac{2}{3}R^3\pi\)

    Провери одговоре Не знам

  • 4.      

    Ако је \(a=\log_{2}3\) и \(b=\log_{5}2 \), тада је \(\log_{24}50\) једнако:

    \(\frac{b-2}{(b+1)(a+3)} \)
    \(\frac{2+b}{b(a+3)} \)
    \(\frac{1+b}{b(a+3)} \)
    \(\frac{-2+b}{b(a-4)} \)
    \(\frac{1+b}{b(a+4)} \)

    Провери одговоре Не знам

  • 5.      

    Једначина круга чији је центар тачка пресека правих \(x-2y+4=0\) и \(3x+y-9=0\), а који додирује праву \(3x+4y+2 \) гласи:

    \(x^{2}-4x+y^{2}-6y+1=0 \)
    \(x^{2}-4x+y^{2}-6y=0 \)
    \(x^{2}-4x+y^{2}-6y-3=0 \)
    \(x^{2}-4x+y^{2}-6y-2=0 \)
    \(x^{2}-4x+y^{2}-6y-1=0 \)

    Провери одговоре Не знам

  • 6.      

    Ако је \(a\in \mathbb{R}\) и \(\left | a+\frac{1}{a} \right |=3\) тада је \(\left | a-\frac{1}{a} \right |\) једнако:

    \(\sqrt{7} \)
    \(\sqrt{2} \)
    \(0 \)
    \(\sqrt{3} \)
    \(\sqrt{5} \)

    Провери одговоре Не знам

  • 7.      

    Унутрашљи углови конвексног петоугла односе се као 3 : 4 : 5 : 7 : 8. Разлика највећег и најмањег од тих углова је:

    120°
    60°
    80°
    100°
    40°

    Провери одговоре Не знам

  • 8.      

    Вредност израза \(\left( 1-sin\frac{\pi}{8} \right)\left( 1+sin\frac{\pi}{8} \right)\) је:

    \(\frac{1}{4}\)
    \(\frac{\sqrt{2}}{4}\)
    \(\frac{2+\sqrt{2}}{4}\)
    \(\frac{2-\sqrt{2}}{4}\)
    \(\frac{\sqrt{2}}{8}\)

    Провери одговоре Не знам

  • 9.      

    Прав ваљак и права купа имају заједничку основу. Врх купе је центар друге основе ваљка. Ако је однос висине ваљка и изводнице купе \(4:5\), тада је однос површина ваљка и купе једнак:

    \(3:2\)
    \(7:5\)
    \(8:5\)
    \(4:3\)
    \(7:4\)

    Провери одговоре Не знам

  • 10.      

    Ако се зна да \(\frac{14}{9}\) биномног коефицијента трећег члана, биномни коефицијент четвртог члана и биномни коефицијент петог члана у развоју бинома \(\left( \sqrt[3]{x}+\frac{1}{\sqrt{x}} \right)^n\)\((n \in N, x>0)\), чине геометријску прогресију, тада је биномни коефицијент уз \(\sqrt{x}\) једнак:

    \(5\)
    \(48\)
    \(84\)
    \(1\)
    \(21\)

    Провери одговоре Не знам

  • 11.      

    Укупан број реалних решења једначине \(3 tg^{2}x-8\cos^{2} x+1=0\) која пропадају интервалу \((0,2\pi )\) је:

    \(4 \)
    \(5 \)
    \(2 \)
    \(6 \)
    \(3 \)

    Провери одговоре Не знам

  • 12.      

    Скуп свих реалних вредности за које важи неједнакост \(|4^{3x}-2^{4x+2}\cdot3^{x+1}+20\cdot12^x\cdot3^x|\geq8\cdot6^x(8^{x-1}+6^x)\) је облика (за неке реалне бројеве \(a, b, c\) и \(d\) такве да је \(-\infty<a<b<c<d<\infty\)):

    \((a,b)\cup\{c\}\)
    \((-\infty,a]\cup[b,c]\cup[d,+\infty)\)
    \((-\infty,a]\cup(b,c)\)
    \((-\infty,a)\cup(d,+\infty)\)
    \((-\infty,a)\cup[b,c)\)

    Провери одговоре Не знам

  • 13.      

    Странице троугла су \(21\) и \(9\sqrt{2} ,\) а њима захваћени угао \(45^o .\) Збир полупречника уписаног и описаног круга тог троугла је:

    \(6(\sqrt{3}-\sqrt{2}) \)
    \(6(\sqrt{2}+1) \)
    \(6(\sqrt{2}-1) \)
    \(6(\sqrt{3}+2) \)
    \(3(-\sqrt{3}+2) \)

    Провери одговоре Не знам

  • 14.      

    Најкраће растојање између правих \(\sqrt{2}x+y=1\) и \(2x+\sqrt{2}y=3\sqrt{2}\) једнако је:

    \(0\)
    \(2\)
    \(\sqrt{2}\)
    \(\frac{\sqrt{6}}{6}\)
    \(\frac{2}{3}\sqrt{3}\)

    Провери одговоре Не знам

  • 15.      

    Једна катета правоуглог троугла је \(8cm\), а хипотенуза је \(17cm\). Полупречник уписаног круга тог троугла је:

    2,5cm
    2cm
    3,5cm
    4cm
    3cm

    Провери одговоре Не знам

  • 16.      

    Укупан број реалних решења једначине \(\sqrt{3\cdot 2^{\log_{10}2x}+1}+\sqrt{2\cdot 2^{\log_{10}2x}+9}=\sqrt{13\cdot 2^{\log_{10}2x}-4}\) је:

    \(2 \)
    \(0 \)
    \(3 \)
    \(1 \)
    Ниједан од понуђених одговора

    Провери одговоре Не знам

  • 17.      

    Једначина \(\sqrt{1-x}=-x\) :

    има тачно два решења
    има тачно једно решење и оно је негативно
    има више од два решење
    нема решења                
    има тачно једно решење и оно је позитивно

    Провери одговоре Не знам

  • 18.      

    Бројеви \(a, b, c\) су узастопни чланови растућег аритметичког низа, а бројеви \(a,b,c+1\) су узастопни бројеви геометријског низа. Ако је \(a+b+c=18\), онда је \(a^2+b^2+c^2\) једнако:

    116
    133
    109
    126
    140

    Провери одговоре Не знам

  • 19.      

    Збир свих целих бројева који задовољавају једначину \(\frac{x}{x+2} \leq \frac{1}{1-x}\)  је:

    \(−1\)
    бесконачан
    \(0\)
    \(−2\)    
     \(1\)  

    Провери одговоре Не знам

  • 20.      

    Ако је \(k \in Z\) и \(0,0010101 \cdot 10^{k}>1001\), која је намања могућа вредност за \(k\)?

    \(6\)
    \(5\)
    \(0\)
    \(-5\)
    \(-6\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време