Задаци

  • 1.      

    У оштроуглом троуглу странице су \(a = 1\) и \(b=2\), а површина \(P=\frac{12}{13}\). Дужина треће странице \(c\) тог троугла једнака је:

    \(\frac{2\sqrt{5}}{\sqrt{13}}\)
    \(\frac{5\sqrt{5}}{\sqrt{13}}\)
    \(\frac{\sqrt{85}}{\sqrt{13}}\)
    \(\frac{4\sqrt{5}}{\sqrt{13}}\)
    \(\frac{3\sqrt{5}}{\sqrt{13}}\)

    Провери одговоре Не знам

  • 2.      

    Коефицијент уз \(x^{24}\) у развијеном облику степена бинома \((x^2-2x)^{13}\) је:

    -312
    312
    -78
    156
    78

    Провери одговоре Не знам

  • 3.      

    За коју вредност реалног параметра \(m\) израз \(x_1^3  + x_2^3\), где су \(x_1\) и  \(x_2\) решења квадратне једначине \(x^2 − x + m^2 + 2m − 3 = 0\), узима максималну вредност?
     

    \(2\) 
    \(1\)
    \(2\)
    \(0\)  
    \(−1\) 

    Провери одговоре Не знам

  • 4.      

    Ако се зна да је полином \(x^{3}+ax^{2}+bx-4, (a,b\in \mathbb{R})\) дељив полиномом \(x^{2}-1 \), тада збир \(a^{2}+ b ^{2}\) износи:

    \(3 \)
    \(14 \)
    \(1 \)
    \(17 \)
    \(5 \)

    Провери одговоре Не знам

  • 5.      

    Сва реална решења једначине \(\frac{x+\sqrt{3}}{\sqrt{3}+\sqrt{x+\sqrt{3}}}+\frac{x-\sqrt{3}}{\sqrt{3}-\sqrt{x-\sqrt{3}}}=\sqrt{x}\) налазе се у скупу:

    \([6,8)\)
    \((2\sqrt{3},3\sqrt{3})\)
    \(\emptyset\)
    \([3\sqrt{3},6)\)
    \([\sqrt{3},2\sqrt{3})\)

    Провери одговоре Не знам

  • 6.      

    Најмања вредност функције \(f(x)=4x+\frac{9\pi ^{2}}{x}+\sin x, x>0\) је:
     

    \(5\pi +2 \)
    \(3\pi +1 \)
    \(\frac{\pi^2-1}{2} \)
    \(\frac{5\pi}{2}\)
    \(12\pi -1 \)

    Провери одговоре Не знам

  • 7.      

    Збир свих целих бројева који задовољавају једначину \(\frac{x}{x+2} \leq \frac{1}{1-x}\)  је:

    \(−2\)    
    \(−1\)
    бесконачан
     \(1\)  
    \(0\)

    Провери одговоре Не знам

  • 8.      

    Ако су \(\alpha\) и \(\beta\) решења једначине \(x^2-2x+5=0\), онда је \(\frac{​\alpha^2+\alpha \beta+ \beta^2}{\alpha^3+\beta^3}\) једнако:

    \(-\frac{1}{22}\)
    \(\frac{1}{2}\)
    \(\frac{1}{22}\)
    \(\frac{1}{11}\)
    \(-\frac{1}{2}\)

    Провери одговоре Не знам

  • 9.      

    Растојање координатног почетка \(O\) правоуглог координатног система \(xOy\) од праве задате једначином \(y=3x+5\) је:

    \(\frac{3}{2}\)
    \(\frac{\sqrt{5}}{2}\)
    \(\frac{\sqrt{10}}{3}\)
    \(\frac{\sqrt{5}}{3}\)
    \(\frac{\sqrt{10}}{2}\)

    Провери одговоре Не знам

  • 10.      

    Вредност израза \( \frac{1-tg^215^{\circ}}{1+tg^215^{\circ}}\) је:

    \(\frac{\sqrt{3}}{2}\)  
    \(-\frac{2}{\sqrt{3}}\)
    \(\frac{1}{2}\)
    \(1\)
    \(\sqrt{3}\)

    Провери одговоре Не знам

  • 11.      

    Ако права \(y = 2x + p\) у равни \(Oxy ( p \in R )\) додирује параболу \(y = x^2 − x\), онда \(p\) припада интервалу:

     

    \([−8, −4)\)
    \([2, 4]\)
    \([−10, −8)\)  
    \([−4, −2)\)   
    \([−2, 2)\)  

    Провери одговоре Не знам

  • 12.      

    Скуп свих реалних вредности за које важи неједнакост \(|4^{3x}-2^{4x+2}\cdot3^{x+1}+20\cdot12^x\cdot3^x|\geq8\cdot6^x(8^{x-1}+6^x)\) је облика (за неке реалне бројеве \(a, b, c\) и \(d\) такве да је \(-\infty<a<b<c<d<\infty\)):

    \((-\infty,a)\cup[b,c)\)
    \((-\infty,a]\cup[b,c]\cup[d,+\infty)\)
    \((-\infty,a)\cup(d,+\infty)\)
    \((-\infty,a]\cup(b,c)\)
    \((a,b)\cup\{c\}\)

    Провери одговоре Не знам

  • 13.      

    Укупан број реалних решења једначине \(\sqrt{3\cdot 2^{\log_{10}2x}+1}+\sqrt{2\cdot 2^{\log_{10}2x}+9}=\sqrt{13\cdot 2^{\log_{10}2x}-4}\) је:

    \(2 \)
    \(3 \)
    \(1 \)
    \(0 \)
    Ниједан од понуђених одговора

    Провери одговоре Не знам

  • 14.      

    Најкраће растојање између правих \(\sqrt{2}x+y=1\) и \(2x+\sqrt{2}y=3\sqrt{2}\) једнако је:

    \(\frac{\sqrt{6}}{6}\)
    \(0\)
    \(2\)
    \(\frac{2}{3}\sqrt{3}\)
    \(\sqrt{2}\)

    Провери одговоре Не знам

  • 15.      

    Највећа могућа запремина праве купе чија изводница има дужину \(s\) је: 

    \(\frac{\pi s^3\sqrt{3}}{27}\)  
    \(\frac{4\pi s^3\sqrt{3}}{27}\)  
    \(\frac{2\pi s^3\sqrt{3}}{27}\)
    \(\frac{\pi s^3\sqrt{3}}{9}\)  
     \(\frac{2\pi s^3\sqrt{2}}{27}\)

    Провери одговоре Не знам

  • 16.      

    Последња цифра броја \(7^{2009}\) је:

    1
    9
    3
    7
    5

    Провери одговоре Не знам

  • 17.      

    Ако су \(x_{1}\) и \(x_{2}\) решења квадратне једначине \(x^2+x+1=0\), тада су \(y_{1}=ax_{1}+x_{2}\) и \(y_{2}=x_{1}+ax_{2}\), \((a \in R)\), решења квадратне једначине:

    \(y^{2}+(a^2+1)y+1=0\)
    \(y^{2}+(a^2+1)y+a^2-a+1=0\)
    \(y^{2}+(a+1)y-a^2+a+1=0\)
    ниједан од понуђених одговора
    \(y^{2}+(a+1)y+a^2-a+1=0\)

    Провери одговоре Не знам

  • 18.      

    Ако је \(a=\log_{2}3\) и \(b=\log_{5}2 \), тада је \(\log_{24}50\) једнако:

    \(\frac{b-2}{(b+1)(a+3)} \)
    \(\frac{2+b}{b(a+3)} \)
    \(\frac{-2+b}{b(a-4)} \)
    \(\frac{1+b}{b(a+3)} \)
    \(\frac{1+b}{b(a+4)} \)

    Провери одговоре Не знам

  • 19.      

    Aко је \(f(x)=x^3-3x\) и \(g(x)=\sin \frac{\pi }{12}x\) тада је \(f(g(2))\) једнако:

    \(0 \)
    \(\frac{11}{2} \)
    \(-\frac{11}{2} \)
    \(-\frac{11}{8} \)
    \(\frac{11}{8}\)

    Провери одговоре Не знам

  • 20.      

    Максимална запремина ваљка уписаног у лопту полупречника \(R\) је:

    \(\frac{4}{3\sqrt{3}}R^3\pi\)
    \(\frac{16}{27}R^3\pi\)
    \(\frac{1}{\sqrt{2}}R^3\pi\)
    \(\frac{2}{3\sqrt{3}}R^3\pi\)
    \(\frac{2}{3}R^3\pi\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време