Задаци

  • 1.      

    Четири младића и четири девојке иду у биоскоп. Имају карте за места у истом реду који има тачно 8 седишта. На колико начина се могу распоредити ако је познато да две од девојака не желе да седа ни на првом ни на последњем месту. 
     

     

    \(15\cdot 6!\)
    \(30\cdot 6!\)
    \(\frac{(8!)^2}{2}\)
    \(\frac{8!}{4!}\)
    \(2\cdot 6!\)  

    Провери одговоре Не знам

  • 2.      

    Скуп свих решења неједначине \(\frac{\left | 1-x \right |}{1-\left | x \right |}<\frac{1+\left | x \right |}{\left | 1+x \right |}\) је облика (за неке реалне бројеве \(a\) и \(b\) такве да је \(0 < a < b < + \infty ):\)

    \((-\infty, -a) \cup (-a, a ) \cup (a, +\infty ) \)
    \((-\infty, -a) \cup (a, +\infty ) \)
    \((a, +\infty ) \)
    \((-\infty, -a) \)
    \((-b, -a) \cup (a, b) \)

    Провери одговоре Не знам

  • 3.      

    Ако је \(A=\frac{1}{6}\left((log_{2}{3})^3- (\log_{2}{6})^3-(\log_{2}{12})^3+(log_{2}{24})^3 \right)\), тада је вредност израза \(2^A\) једнака:

    \(1\)
    \(144\)
    \(64\)
    \(36\)
    \(72\)

    Провери одговоре Не знам

  • 4.      

    Ако је:

     

    \(\begin{eqnarray} x-2y+z&=&7\\ 2x+3y-z&=&-2\\ -x+2y+2z&=&2 \end{eqnarray}\)

     

    онда је \(x^2+y^2+z^2\) једнако:

    8
    12
    16
    10
    14

    Провери одговоре Не знам

  • 5.      

    Ако график функције \(y=\frac{1}{x^2-ax+2}\) садржи тачку \(M\left( -3, \frac{1}{19} \right)\) онда је највећа вредност функције једнака:

    \(\frac{1}{2}\)
    \(\frac{3}{22}\)
    \(\frac{3}{10}\)
    \(4\)
    \(\frac{9}{2}\)

    Провери одговоре Не знам

  • 6.      

    Најкраће растојање између правих \(\sqrt{2}x+y=1\) и \(2x+\sqrt{2}y=3\sqrt{2}\) једнако је:

    \(0\)
    \(\frac{2}{3}\sqrt{3}\)
    \(\sqrt{2}\)
    \(\frac{\sqrt{6}}{6}\)
    \(2\)

    Провери одговоре Не знам

  • 7.      

    Коефицијент уз \(x^{24}\) у развијеном облику степена бинома \((x^2 − 2x)^{13}\) је:

    \(156\)  
    \(312\)
    \(-312\)            
    \(78\)
    \(-78\)  

    Провери одговоре Не знам

  • 8.      

    Реалан део комплексног броја \( \frac{1}{2-\sqrt{5}+i\sqrt{3}}\) је:

    \(\frac{1}{3-\sqrt{5}}\)
    \(-2-\sqrt{5}\)
    \(\frac{(\sqrt{5}-3)\sqrt{3}}{16}\)
    \(\frac{1-\sqrt{5}}{4}\)
    \(\frac{1-\sqrt{5}}{16}\)

    Провери одговоре Не знам

  • 9.      

    У једнакокраком \(ABC\) троуглу је \(AB=BC=b\), \(AC=a\) и \(\sphericalangle ABC=20^{\circ}\). тада је израз \(\frac{a^2}{b^2}+\frac{b}{a}\) једнак:

    \(\frac{5}{2}\)
    \(3\)
    \(2\)
    \(1\)
    \(\frac{3}{2}\)

    Провери одговоре Не знам

  • 10.      

    Последња цифра броја \(7^{2009}\) је:

    5
    1
    9
    7
    3

    Провери одговоре Не знам

  • 11.      

    Ако за дијагонале ромба важи једнакост \(d_1=(2-\sqrt{3})d_2\), тада је оштар угао ромба једнак:

    \(45^{\circ}\)
    \(15^{\circ}\)
    \(22,5^{\circ}\)
    \(30^{\circ}\)
    \(60^{\circ}\)

    Провери одговоре Не знам

  • 12.      

    У оштроуглом троуглу странице су \(a = 1\) и \(b=2\), а површина \(P=\frac{12}{13}\). Дужина треће странице \(c\) тог троугла једнака је:

    \(\frac{3\sqrt{5}}{\sqrt{13}}\)
    \(\frac{4\sqrt{5}}{\sqrt{13}}\)
    \(\frac{\sqrt{85}}{\sqrt{13}}\)
    \(\frac{2\sqrt{5}}{\sqrt{13}}\)
    \(\frac{5\sqrt{5}}{\sqrt{13}}\)

    Провери одговоре Не знам

  • 13.      

    Која од наведених релација постоји између решења \(x_1\) и \(x_2\) квадратне једначине \((1+m)x^{2}-(6+5m)x+5+6m=0, (m\in \mathbb{R}, m\neq 1) ?\)

    \(3x_1x_2+x_1+x_2-1=0 \)
    \(-x_1x_2+x_1+x_2+2=0 \)
    \(-x_1x_2+x_1+x_2-4=0 \)
    \(x_1x_2+x_1+x_2-11=0 \)
    \(4 x_1x_2+x_1+x_2=2 \)

    Провери одговоре Не знам

  • 14.      

    Унутрашљи углови конвексног петоугла односе се као 3 : 4 : 5 : 7 : 8. Разлика највећег и најмањег од тих углова је:

    100°
    40°
    120°
    60°
    80°

    Провери одговоре Не знам

  • 15.      

    За коју вредност реалног параметра \(m\) израз \(x_1^3  + x_2^3\), где су \(x_1\) и  \(x_2\) решења квадратне једначине \(x^2 − x + m^2 + 2m − 3 = 0\), узима максималну вредност?
     

    \(0\)  
    \(1\)
    \(2\) 
    \(−1\) 
    \(2\)

    Провери одговоре Не знам

  • 16.      

    У правој купи угао између изводнице и висине је \(60^{\circ}\) а изводница је за \(2cm\) дужа од висине. Колика је запремина те купе?

     

     \(\frac{\pi}{2} cm^3\)  
    \(\frac{\pi}{3} cm^3\)
    \(\pi^2 cm^3\)    
    \(\pi cm^3\)
    \(8\pi cm^3\)

    Провери одговоре Не знам

  • 17.      

    Нека је \(\DeclareMathOperator\tg{tg} \DeclareMathOperator\ctg{ctg} f_1(x)=1, f_2(x)= \tg{\frac{x}{2}}\ctg{\frac{x}{2}}\) и \(\DeclareMathOperator\tg{tg} \DeclareMathOperator\ctg{ctg} f_3(x)= \frac{|\sin x|}{\sqrt{1-\cos^2x}}\). Тачно је тврђење:

    \(f_1=f_3 \neq f_2\)
    међу датим функцијама нема једнаких
    све функције су једнаке међу собом
    \(f_1=f_2 \neq f_3\)
    \(f_1 \neq f_2 = f_3\)

    Провери одговоре Не знам

  • 18.      

    Укупан број реалних решења једначине \(\sqrt{3\cdot 2^{\log_{10}2x}+1}+\sqrt{2\cdot 2^{\log_{10}2x}+9}=\sqrt{13\cdot 2^{\log_{10}2x}-4}\) је:

    \(0 \)
    \(1 \)
    Ниједан од понуђених одговора
    \(3 \)
    \(2 \)

    Провери одговоре Не знам

  • 19.      

    На колико начина се у ред могу поређати 5 ученика и 2 ученице, тако да ученице не стоје једна до друге?

    \(3600 \)
    \(240\)
    \(250 \)
    \(7680 \)
    \(2400 \)

    Провери одговоре Не знам

  • 20.      

    Најмања вредност функције \(f(x)=4x+\frac{9\pi ^{2}}{x}+\sin x, x>0\) је:
     

    \(5\pi +2 \)
    \(12\pi -1 \)
    \(\frac{5\pi}{2}\)
    \(3\pi +1 \)
    \(\frac{\pi^2-1}{2} \)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време