Задаци

  • 1.      

    Вредност израза \(8\sin ^2 80^o-2\sqrt{3}\sin 40^o-2\cos 40^o\) једнака је:

    \(4 \)
    \(1 \)
    \(2\sqrt{3}\)
    \(4\sqrt{3} \)
    \(2\)

    Провери одговоре Не знам

  • 2.      

    Око кружнице полупречника \(2cm\) описан је једнакокраки трапез површине \(20cm^2\). Дужина његовог крака је:

     

    \(5cm\)  
     такав трапез не постоји
    \(6cm\)
    \(10cm\)      
    \(20cm\)

    Провери одговоре Не знам

  • 3.      

    Најкраће растојање између правих \(\sqrt{2}x+y=1\) и \(2x+\sqrt{2}y=3\sqrt{2}\) једнако је:

    \(\frac{\sqrt{6}}{6}\)
    \(2\)
    \(\sqrt{2}\)
    \(0\)
    \(\frac{2}{3}\sqrt{3}\)

    Провери одговоре Не знам

  • 4.      

    Најмања вредност функције \(f(x)=4x+\frac{9\pi ^{2}}{x}+\sin x, x>0\) је:
     

    \(12\pi -1 \)
    \(5\pi +2 \)
    \(\frac{5\pi}{2}\)
    \(3\pi +1 \)
    \(\frac{\pi^2-1}{2} \)

    Провери одговоре Не знам

  • 5.      

    У једнакокраком \(ABC\) троуглу је \(AB=BC=b\), \(AC=a\) и \(\sphericalangle ABC=20^{\circ}\). тада је израз \(\frac{a^2}{b^2}+\frac{b}{a}\) једнак:

    \(\frac{5}{2}\)
    \(3\)
    \(2\)
    \(\frac{3}{2}\)
    \(1\)

    Провери одговоре Не знам

  • 6.      

    Ако график функције \(y=\frac{1}{x^2-ax+2}\) садржи тачку \(M\left( -3, \frac{1}{19} \right)\) онда је највећа вредност функције једнака:

    \(\frac{9}{2}\)
    \(\frac{3}{10}\)
    \(\frac{3}{22}\)
    \(\frac{1}{2}\)
    \(4\)

    Провери одговоре Не знам

  • 7.      

    Укупан број реалних решења једначине \(3 tg^{2}x-8\cos^{2} x+1=0\) која пропадају интервалу \((0,2\pi )\) је:

    \(6 \)
    \(2 \)
    \(4 \)
    \(5 \)
    \(3 \)

    Провери одговоре Не знам

  • 8.      

    Израз \(a \sqrt{a} \cdot \sqrt[4]{a^3}\), \(a \geq 0\), идентички је једнак изразу:

    \(\sqrt[4]{a^{11}}\)
    \(a^6\)
    \(\sqrt[4]{a^9}\)
    \(a^2\)
    \(\sqrt[4]{a^7}\)

    Провери одговоре Не знам

  • 9.      

    Број \({\left( 1+i \sqrt{3}\right)}^n\), где је \(i^2=-1\), је реалан ако и само ако за неки цео број \(k\) важи:

    \(n=2k\)
    \(n=6k\)
    \(n=3k+2\)
    \(n=3k\)
    \(n=3k+1\)

    Провери одговоре Не знам

  • 10.      

    Ако је \(a=0,1^{0,1}\), \(b=0,2^{0,2}\) и \(c=0,3^{0,3}\), тада је

    \(a<b<c\)
    \(c<b<a\)
    \(b<a<c\)
    \(b<c<a\)
    \(c<a<b\)

    Провери одговоре Не знам

  • 11.      

    Кружница пролази кроз крајње тачке једне странице квадрата и кроз средиште наспрамне странице. Ако је страница квадрата дужине \(a\), онда је пречник кружнице једнак: 

    \(\frac{5a}{4}\)
    \(\frac{3a}{\sqrt{2}}\)  
    \(\frac{a+1}{a}\)
     \(\frac{3a}{2}\)  
    \(\frac{\sqrt{5}a}{4}\)

    Провери одговоре Не знам

  • 12.      

    Ако је \(f(\frac{x+3}{x+1})=3x+2\)  за \(x \in R \setminus\{ -1\}\), онда је  \(f(5)\) једнако:

    \( \frac{1}{2}\)
    \( -\frac{1}{2} \)
    \( \frac{5}{2} \)
    \( 17 \)
    \( 5 \)

    Провери одговоре Не знам

  • 13.      

    Дата је аритметичка прогресија \(a_{1},a_{2},a_{3},\dots\) чија је разлика \(d=1\), а збир првих \(98\) чланова \(a_{1}+a_{2}+ \cdots+a_{98}=137\). Тада је збир \(a_{2}+a_{4}+a_{6}+ \cdots+a_{98}\) једнак:

    \(88\)
    \(93\)
    \(103\)
    \(141\)
    \(127\)

    Провери одговоре Не знам

  • 14.      

    Ако је \(N\) број шестоцифрених бројева који у свом запису садрже цифру 1 бар на једном месту, тада \(N\) припада интервалу:

    \([3 \cdot 10^5, 4 \cdot 10^5)\)
    \([5 \cdot 10^5, 6 \cdot 10^5)\)
    \([2 \cdot 10^5, 3 \cdot 10^5)\)
    \([4 \cdot 10^5, 5 \cdot 10^5)\)
    \([10^5, 2 \cdot 10^5)\)

    Провери одговоре Не знам

  • 15.      

    Укупан број реалних решења једначине \(\sqrt{3\cdot 2^{\log_{10}2x}+1}+\sqrt{2\cdot 2^{\log_{10}2x}+9}=\sqrt{13\cdot 2^{\log_{10}2x}-4}\) је:

    \(3 \)
    Ниједан од понуђених одговора
    \(0 \)
    \(1 \)
    \(2 \)

    Провери одговоре Не знам

  • 16.      

    Сва реална решења једначине \(\frac{x+\sqrt{3}}{\sqrt{3}+\sqrt{x+\sqrt{3}}}+\frac{x-\sqrt{3}}{\sqrt{3}-\sqrt{x-\sqrt{3}}}=\sqrt{x}\) налазе се у скупу:

    \([6,8)\)
    \([\sqrt{3},2\sqrt{3})\)
    \((2\sqrt{3},3\sqrt{3})\)
    \([3\sqrt{3},6)\)
    \(\emptyset\)

    Провери одговоре Не знам

  • 17.      

    Скуп свих решења неједначине \(\frac{\left | 1-x \right |}{1-\left | x \right |}<\frac{1+\left | x \right |}{\left | 1+x \right |}\) је облика (за неке реалне бројеве \(a\) и \(b\) такве да је \(0 < a < b < + \infty ):\)

    \((-b, -a) \cup (a, b) \)
    \((-\infty, -a) \)
    \((-\infty, -a) \cup (a, +\infty ) \)
    \((a, +\infty ) \)
    \((-\infty, -a) \cup (-a, a ) \cup (a, +\infty ) \)

    Провери одговоре Не знам

  • 18.      

    Ако се зна да \(\frac{14}{9}\) биномног коефицијента трећег члана, биномни коефицијент четвртог члана и биномни коефицијент петог члана у развоју бинома \(\left( \sqrt[3]{x}+\frac{1}{\sqrt{x}} \right)^n\)\((n \in N, x>0)\), чине геометријску прогресију, тада је биномни коефицијент уз \(\sqrt{x}\) једнак:

    \(1\)
    \(21\)
    \(5\)
    \(84\)
    \(48\)

    Провери одговоре Не знам

  • 19.      

    Ако су \(\alpha\) и \(\beta\) решења једначине \(x^2-2x+5=0\), онда је \(\frac{​\alpha^2+\alpha \beta+ \beta^2}{\alpha^3+\beta^3}\) једнако:

    \(\frac{1}{11}\)
    \(-\frac{1}{2}\)
    \(\frac{1}{2}\)
    \(\frac{1}{22}\)
    \(-\frac{1}{22}\)

    Провери одговоре Не знам

  • 20.      

    Тангента криве \(y=e^{-x} (x>-1)\), сече координатне осе у тачкама \(A\) и \(B\). Ако је \(O\) координатни почетак, максимална површина троугла \(AOB\) износи:

    \(2e\)
    \(\frac{3}{e}\)
    \(e\)
    \(\frac{2}{e}\)
    \(\frac{1}{e}\)

    Провери одговоре Не знам

Пријемни испит © 2015 | Сва права задржана.
free web counter

Тренутно нема података за приказ графикона!

Заступљеност одговора

Одговори кроз време